1,821 research outputs found
Tissue location of resistance in apple to the rosy apple aphid established by electrical penetration graphs
A study of the constitutive resistance of the apple cultivar Florina, Malus domestica Borkh. (Rosaceae), to the rosy apple aphid, Dysaphis plantaginea (Passerini) (Homoptera Aphididae), was performed for the first time by the electrical penetration graph (DC-EPG) system, using the susceptible apple cultivar Smoothe as control. All experiments were conducted with apterous adult virginoparae. The results showed a constitutive resistance in Florina due to a much longer period before the first probe reflecting surface factors. Some weak indications were found for pre-phloem resistance and initiating phloem access was not affected as inferred from equal time to show phloem salivation. However, the complete absence of phloem ingestion indicates a major resistance factor in the phloem sieve elements, most likely in the sieve element sap. Surface factors could have affected tissue related variables and this should be studied further. Anyhow, the strong constitutive resistance in Florina, either on the surface alone or in the phloem as well, effectively prevented reliable experiments on induced resistance, previously detected by molecular methods
Miglioramento dell'efficienza tecnica e ambientale degli adesivi utilizzati nel settore del mobile
Response of female Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles
Peach shoot volatiles were attractive to mated female oriental fruit moth, Cydia molesta (Busck), in a dual choice arena. No preference was observed between leaf odours from the principle host plant, peach, and the secondary host plant, apple. Twenty-two compounds were identified in headspace volatiles of peach shoots using gas chromatography-mass spectrometry. Green leaf volatiles accounted for more than 50% of the total emitted volatiles. A bioassay-assisted fractionation using different sorbent polymers indicated an attractant effect of compounds with a chain length of 6-8 carbon atoms. The major compounds of this fraction were tested either singly or in combinations for behavioural response of females. Significant bioactivity was found for a three-component mixture of (Z)-3-hexen-1-yl acetate, (Z)-3-hexen-1-ol and benzaldehyde in a 4:1:1 ratio. This synthetic mixture elicited a similar attractant effect as the full natural blend from peach shoots as well as the bioactive fractio
Canal shaping with WaveOne Primary reciprocating files and ProTaper system: a comparative study
DIFFERENCE BETWEEN 2D AND 3D TECHNIQUES FOR EVALUATING SHAPING PERFORMANCE IN SIMULATED ROOT CANALS
An Antimicrobial Peptidomimetic Induces Mucorales Cell Death through Mitochondria-Mediated Apoptosis
The incidence of mucormycosis has dramatically increased in immunocompromised patients. Moreover, the array of cellular targets whose inhibition results in fungal cell death is rather limited. Mitochondria have been mechanistically identified as central regulators of detoxification and virulence in fungi. Our group has previously designed and developed a proteolytically-resistant peptidomimetic motif D(KLAKLAK)2 with pleiotropic action ranging from targeted (i.e., ligand-directed) activity against cancer and obesity to non-targeted activity against antibiotic resistant gram-negative rods. Here we evaluated whether this non-targeted peptidomimetic motif is active against Mucorales. We show that D(KLAKLAK)2 has marked fungicidal action, inhibits germination, and reduces hyphal viability. We have also observed cellular changes characteristic of apoptosis in D(KLAKLAK)2-treated Mucorales cells. Moreover, the fungicidal activity was directly correlated with vacuolar injury, mitochondrial swelling and mitochondrial membrane depolarization, intracellular reactive oxygen species accumulation (ROS), and increased caspase-like enzymatic activity. Finally, these apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine indicating mechanistic pathway specificity. Together, these findings indicate that D(KLAKLAK)2 makes Mucorales exquisitely susceptible via mitochondrial injury-induced apoptosis. This prototype may serve as a candidate drug for the development of translational applications against mucormycosis and perhaps other fungal infections
Gamma Uranium Molybdenum Alloy: Its Hydride and Performance
The high density metastable gamma uranium molybdenum alloy (γ‐UMo) is being qualified as a nuclear fuel for the conversion of high enriched uranium (HEU) to low enriched uranium (LEU) fuels in research nuclear reactors. γ‐UMo, with compositions between 7 and 10 wt.% molybdenum, has excellent properties to allocate fission gases but unacceptable behavior in contact with aluminum in the matrix of dispersed fuels. Development and processing alternatives are welcome to decide final working paths and new nuclear fuels design. A historical introduction on the development of materials testing reactors (MTR) nuclear fuels is presented to illustrate comings and goings to reach desired qualification objectives. Several studies performed on UMo probes, miniplates and full size plates are mentioned to contribute to the knowledge of fuel properties and to incorporate new process technologies. Focus is directed to the discovery of the gamma uranium molybdenum hydride and the hot rolling colamination of monolithic UMo with nonaluminum claddings. A scalable process of hydriding, milling and dehydriding (HMD) to comminute the ductile UMo was developed. Monolithic UMo miniplates with Zircaloy‐4 (Zry4) cladding was colaminated for the first time and under irradiation conditions showed excellent performance after high burn‐up
A compact light readout system for longitudinally segmented shashlik calorimeters
The longitudinal segmentation of shashlik calorimeters is challenged by dead
zones and non-uniformities introduced by the light collection and readout
system. This limitation can be overcome by direct fiber-photosensor coupling,
avoiding routing and bundling of the wavelength shifter fibers and embedding
ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present
the first experimental test of this readout scheme performed at the CERN PS-T9
beamline in 2015 with negative particles in the 1-5~GeV energy range. In this
paper, we demonstrate that the scheme does not compromise the energy resolution
and linearity compared with standard light collection and readout systems. In
addition, we study the performance of the calorimeter for partially contained
charged hadrons to assess the separation capability and the response of
the photosensors to direct ionization.Comment: To appear in Nuclear Instruments and Methods in Physics Research,
A narrow band neutrino beam with high precision flux measurements
The ENUBET facility is a proposed narrow band neutrino beam where lepton
production is monitored at single particle level in the instrumented decay
tunnel. This facility addresses simultaneously the two most important
challenges for the next generation of cross section experiments: a superior
control of the flux and flavor composition at source and a high level of
tunability and precision in the selection of the energy of the outcoming
neutrinos. We report here the latest results in the development and test of the
instrumentation for the decay tunnel. Special emphasis is given to irradiation
tests of the photo-sensors performed at INFN-LNL and CERN in 2017 and to the
first application of polysiloxane-based scintillators in high energy physics.Comment: Poster presented at NuPhys2017 (London, 20-22 December 2017). 5
pages, 2 figure
- …
