545 research outputs found
Band-edge problem in the theoretical determination of defect energy levels: the O vacancy in ZnO as a benchmark case
Calculations of formation energies and charge transition levels of defects
routinely rely on density functional theory (DFT) for describing the electronic
structure. Since bulk band gaps of semiconductors and insulators are not well
described in semilocal approximations to DFT, band-gap correction schemes or
advanced theoretical models which properly describe band gaps need to be
employed. However, it has become apparent that different methods that reproduce
the experimental band gap can yield substantially different results regarding
charge transition levels of point defects. We investigate this problem in the
case of the (+2/0) charge transition level of the O vacancy in ZnO, which has
attracted considerable attention as a benchmark case. For this purpose, we
first perform calculations based on non-screened hybrid density functionals,
and then compare our results with those of other methods. While our results
agree very well with those obtained with screened hybrid functionals, they are
strikingly different compared to those obtained with other band-gap corrected
schemes. Nevertheless, we show that all the different methods agree well with
each other and with our calculations when a suitable alignment procedure is
adopted. The proposed procedure consists in aligning the electron band
structure through an external potential, such as the vacuum level. When the
electron densities are well reproduced, this procedure is equivalent to an
alignment through the average electrostatic potential in a calculation subject
to periodic boundary conditions. We stress that, in order to give accurate
defect levels, a theoretical scheme is required to yield not only band gaps in
agreement with experiment, but also band edges correctly positioned with
respect to such a reference potential
O2 oxidation reaction at the Si(100)-SiO2 interface: A first-principles investigation
We investigated the oxidation reaction of the O2 molecule at the Si(100)-SiO2 interface by using a constrained ab initio molecular dynamics approach. To represent the Si(100)-SiO2 interface, we adopted several model interfaces whose structural properties are consistent with atomic-scale information obtained from a variety of experimental probes. We addressed the oxidation reaction by sampling different reaction pathways of the O2 molecule at the interface. The reaction proceeds sequentially through the incorporation of the O2 molecule in a Si-Si bond and the dissociation of the resulting network O2-species. The oxidation reaction occurs nearly spontaneously and is exothermic, regardless of the spin state of the O2 molecule. Our study suggests a picture of the silicon oxidation process entirely based on diffusive processe
The vibrational dynamics of vitreous silica: Classical force fields vs. first-principles
We compare the vibrational properties of model SiO_2 glasses generated by
molecular-dynamics simulations using the effective force field of van Beest et
al. (BKS) with those obtained when the BKS structure is relaxed using an ab
initio calculation in the framework of the density functional theory. We find
that this relaxation significantly improves the agreement of the density of
states with the experimental result. For frequencies between 14 and 26 THz the
nature of the vibrational modes as determined from the BKS model is very
different from the one from the ab initio calculation, showing that the
interpretation of the vibrational spectra in terms of calculations using
effective potentials can be very misleading.Comment: 7 pages of Latex, 4 figure
Structure and energetics of the Si-SiO_2 interface
Silicon has long been synonymous with semiconductor technology. This unique
role is due largely to the remarkable properties of the Si-SiO_2 interface,
especially the (001)-oriented interface used in most devices. Although Si is
crystalline and the oxide is amorphous, the interface is essentially perfect,
with an extremely low density of dangling bonds or other electrically active
defects. With the continual decrease of device size, the nanoscale structure of
the silicon/oxide interface becomes more and more important. Yet despite its
essential role, the atomic structure of this interface is still unclear. Using
a novel Monte Carlo approach, we identify low-energy structures for the
interface. The optimal structure found consists of Si-O-Si "bridges" ordered in
a stripe pattern, with very low energy. This structure explains several
puzzling experimental observations.Comment: LaTex file with 4 figures in GIF forma
Structure and oxidation kinetics of the Si(100)-SiO2 interface
We present first-principles calculations of the structural and electronic
properties of Si(001)-SiO2 interfaces. We first arrive at reasonable structures
for the c-Si/a-SiO2 interface via a Monte-Carlo simulated annealing applied to
an empirical interatomic potential, and then relax these structures using
first-principles calculations within the framework of density-functional
theory. We find a transition region at the interface, having a thickness on the
order of 20\AA, in which there is some oxygen deficiency and a corresponding
presence of sub-oxide Si species (mostly Si^+2 and Si^+3). Distributions of
bond lengths and bond angles, and the nature of the electronic states at the
interface, are investigated and discussed. The behavior of atomic oxygen in
a-SiO2 is also investigated. The peroxyl linkage configuration is found to be
lower in energy than interstitial or threefold configurations. Based on these
results, we suggest a possible mechanism for oxygen diffusion in a-SiO2 that
may be relevant to the oxidation process.Comment: 7 pages, two-column style with 6 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#ng_sio
Charging Induced Emission of Neutral Atoms from NaCl Nanocube Corners
Detachment of neutral cations/anions from solid alkali halides can in
principle be provoked by donating/subtracting electrons to the surface of
alkali halide crystals, but generally constitutes a very endothermic process.
However, the amount of energy required for emission is smaller for atoms
located in less favorable positions, such as surface steps and kinks. For a
corner ion in an alkali halide cube the binding is the weakest, so it should be
easier to remove that atom, once it is neutralized. We carried out first
principles density functional calculations and simulations of neutral and
charged NaCl nanocubes, to establish the energetics of extraction of
neutralized corner ions. Following hole donation (electron removal) we find
that detachment of neutral Cl corner atoms will require a limited energy of
about 0.8 eV. Conversely, following the donation of an excess electron to the
cube, a neutral Na atom is extractable from the corner at the lower cost of
about 0.6 eV. Since the cube electron affinity level (close to that a NaCl(100)
surface state, which we also determine) is estimated to lie about 1.8 eV below
vacuum, the overall energy balance upon donation to the nanocube of a zero
energy electron from vacuum will be exothermic. The atomic and electronic
structure of the NaCl(100) surface, and of the nanocube Na and Cl corner
vacancies are obtained and analyzed as a byproduct.Comment: 16 pages, 2 table, 7 figure
Design of a low band gap oxide ferroelectric: BiTiO
A strategy for obtaining low band gap oxide ferroelectrics based on charge
imbalance is described and illustrated by first principles studies of the
hypothetical compound BiTiO, which is an alternate stacking of
the ferroelectric BiTiO. We find that this compound is
ferroelectric, similar to BiTiO although with a reduced
polarization. Importantly, calculations of the electronic structure with the
recently developed functional of Tran and Blaha yield a much reduced band gap
of 1.83 eV for this material compared to BiTiO. Therefore,
BiTiO is predicted to be a low band gap ferroelectric material
Non-linear macroscopic polarization in III-V nitride alloys
We study the dependence of macroscopic polarization on composition and strain
in wurtzite III-V nitride ternary alloys using ab initio density-functional
techniques. The spontaneous polarization is characterized by a large bowing,
strongly dependent on the alloy microscopic structure. The bowing is due to the
different response of the bulk binaries to hydrostatic pressure, and to
internal strain effects (bond alternation). Disorder effects are instead minor.
Deviations from parabolicity (simple bowing) are of order 10 % in the most
extreme case of AlInN alloy, much less at all other compositions. Piezoelectric
polarization is also strongly non-linear. At variance with the spontaneous
component, this behavior is independent of microscopic alloy structure or
disorder effects, and due entirely to the non-linear strain dependence of the
bulk piezoelectric response. It is thus possible to predict the piezoelectric
polarization for any alloy composition using the piezoelectricity of the parent
binaries.Comment: RevTex 7 pages, 7 postscript figures embedde
Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations
We study the convergence and the stability of fictitious dynamical methods
for electrons. First, we show that a particular damped second-order dynamics
has a much faster rate of convergence to the ground-state than first-order
steepest descent algorithms while retaining their numerical cost per time step.
Our damped dynamics has efficiency comparable to that of conjugate gradient
methods in typical electronic minimization problems. Then, we analyse the
factors that limit the size of the integration time step in approaches based on
plane-wave expansions. The maximum allowed time step is dictated by the highest
frequency components of the fictitious electronic dynamics. These can result
either from the large wavevector components of the kinetic energy or from the
small wavevector components of the Coulomb potential giving rise to the so
called {\it charge sloshing} problem. We show how to eliminate large wavevector
instabilities by adopting a preconditioning scheme that is implemented here for
the first-time in the context of Car-Parrinello ab-initio molecular dynamics
simulations of the ionic motion. We also show how to solve the charge-sloshing
problem when this is present. We substantiate our theoretical analysis with
numerical tests on a number of different silicon and carbon systems having both
insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.
Dynamical-charge neutrality at a crystal surface
For both molecules and periodic solids, the ionic dynamical charge tensors
which govern the infrared activity are known to obey a dynamical neutrality
condition. This condition enforces their sum to vanish (over the whole finite
system, or over the crystal cell, respectively). We extend this sum rule to the
non trivial case of the surface of a semiinfinite solid and show that, in the
case of a polar surface of an insulator, the surface ions cannot have the same
dynamical charges as in the bulk. The sum rule is demonstrated through
calculations for the Si-terminated SiC(001) surface.Comment: 4 pages, latex file, 1 postscript figure automatically include
- …
