823 research outputs found
Lagrangian statistics of particle pairs in homogeneous isotropic turbulence
We present a detailed investigation of the particle pair separation process
in homogeneous isotropic turbulence. We use data from direct numerical
simulations up to Taylor's Reynolds number 280 following the evolution of about
two million passive tracers advected by the flow over a time span of about
three decades. We present data for both the separation distance and the
relative velocity statistics. Statistics are measured along the particle pair
trajectories both as a function of time and as a function of their separation,
i.e. at fixed scales. We compare and contrast both sets of statistics in order
to gain an insight into the mechanisms governing the separation process. We
find very high levels of intermittency in the early stages, that is, for travel
times up to order ten Kolmogorov time scales. The fixed scale statistics allow
us to quantify anomalous corrections to Richardson diffusion in the inertial
range of scales for those pairs that separate rapidly. It also allows a
quantitative analysis of intermittency corrections for the relative velocity
statistics.Comment: 16 pages, 16 figure
A general theorem on angular-momentum changes due to potential vorticity mixing and on potential-energy changes due to buoyancy mixing
An initial zonally symmetric quasigeostrophic potential-vorticity (PV)
distribution q_i(y) is subjected to complete or partial mixing within some
finite zone |y| < L, where y is latitude. The change in M, the total absolute
angular momentum, between the initial and any later time is considered. For
standard quasigeostrophic shallow-water beta-channel dynamics it is proved
that, for any q_i(y) such that dq_i/dy > 0 throughout |y| < L, the change in M
is always negative. This theorem holds even when "mixing" is understood in the
most general possible sense. Arbitrary stirring or advective rearrangement is
included, combined to an arbitrary extent with spatially inhomogeneous
diffusion. The theorem holds whether or not the PV distribution is zonally
symmetric at the later time. The same theorem governs Boussinesq
potential-energy changes due to buoyancy mixing in the vertical. For the
standard quasigeostrophic beta-channel dynamics to be valid the Rossby
deformation length L_D >> \epsilon L where \epsilon is the Rossby number; when
L_D = \infty the theorem applies not only to the beta-channel, but also to a
single barotropic layer on the full sphere, as considered in the recent work of
Dunkerton and Scott on "PV staircases". It follows that the M-conserving PV
reconfigurations studied by those authors must involve processes describable as
PV unmixing, or anti-diffusion, in the sense of time-reversed diffusion.
Ordinary jet self-sharpening and jet-core acceleration do not, by contrast,
require unmixing, as is shown here by detailed analysis. Mixing in the jet
flanks suffices. The theorem extends to multiple layers and continuous
stratification. A corollary is a new nonlinear stability theorem for shear
flows.Comment: 14 pages, 4 figures; Final version, accepted by J. Atmos. Sci, in
pres
Active and passive fields face to face
The statistical properties of active and passive scalar fields transported by
the same turbulent flow are investigated. Four examples of active scalar have
been considered: temperature in thermal convection, magnetic potential in
two-dimensional magnetohydrodynamics, vorticity in two-dimensional Ekman
turbulence and potential temperature in surface flows. In the cases of
temperature and vorticity, it is found that the active scalar behavior is akin
to that of its co-evolving passive counterpart. The two other cases indicate
that this similarity is in fact not generic and differences between passive and
active fields can be striking: in two-dimensional magnetohydrodynamics the
magnetic potential performs an inverse cascade while the passive scalar
cascades toward the small-scales; in surface flows, albeit both perform a
direct cascade, the potential temperature and the passive scalar have different
scaling laws already at the level of low-order statistical objects. These
dramatic differences are rooted in the correlations between the active scalar
input and the particle trajectories. The role of such correlations in the issue
of universality in active scalar transport and the behavior of dissipative
anomalies is addressed.Comment: 36 pages, 20 eps figures, for the published version see
http://www.iop.org/EJ/abstract/1367-2630/6/1/07
Considerations in relation to off-site emergency procedures and response for nuclear accidents
The operation of nuclear facilities has, fortunately, not led to many accidents with off-site consequences. However, it is well-recognised that should a large release of radioactivity occur, the effects in the surrounding area and population will be significant. These effects can be mitigated by developing emergency preparedness and response plans prior to the operation of the nuclear facility that can be exercised regularly and implemented if an accident occurs. This review paper details the various stages of a nuclear accident and the corresponding aspects of an emergency preparedness plan that are relevant to these stages, both from a UK and international perspective. The paper also details how certain aspects of emergency preparedness have been affected by the accident at Fukushima Dai-ichi and as a point of comparison how emergency management plans were implemented following the accidents at Three Mile Island 2 and Chernobyl. In addition, the UK’s economic costing model for nuclear accidents COCO-2, and the UK’s Level-3 Probabilistic Safety Assessment code “PACE” are introduced. Finally, the factors that affect the economic impact of a nuclear accident, especially from a UK standpoint, are described
Air pollution control with semi-infinite programming
Environment issues are more than ever important in a modern society. Complying with
stricter legal thresholds on pollution emissions raises an important economic issue. This
paper presents some ideas in the use of optimization tools to help in the planning and control
of stationary pollution sources.
Three main semi-infinite programming approaches are described. The first consists in optimizing
an objective function while the pollution level in a given region is kept bellow a
given threshold. In the second approach the maximum pollution level in a given region
is computed and in the third an air pollution abatement problem is considered. These formulations
allow to obtain the best control parameters and the maxima pollution positions,
where the sampling stations should be placed.
A specific modeling language was used to code four academic problems. Numerical results
computed with a semi-infinite programming solver are shown
Note on conditions for which data on the power spectra at atmospheric turbulence are required
Recommended from our members
Scintillometry in urban and complex environments: a review
Knowledge of turbulent exchange in complex environments is relevant to a wide range of hydro-meteorological applications. Observations are required to improve understanding and inform model parameterisations but the very nature of complex environments presents challenges for measurements. Scintillometry offers several advantages as a technique for providing spatially-integrated turbulence data (structure parameters and fluxes), particularly in areas that would be impracticable to monitor using eddy covariance, such as across a valley, above a city or over heterogeneous landscapes. Despite much of scintillometry theory assuming flat, homogeneous surfaces and ideal conditions, over the last 20 years scintillometers have been deployed in increasingly complex locations, including urban and mountainous areas. This review draws together fundamental and applied research in complex environments, to assess what has been learnt, summarise the state-of-the-art and identify key areas for future research. Particular attention is given to evidence, or relative lack thereof, of the impact of complex environments on scintillometer data. Practical and theoretical considerations to account for the effects of complexity are discussed, with the aim of developing measurement capability towards more reliable and accurate observations in future. The usefulness of structure parameter measurements (in addition to fluxes, which must be derived using similarity theory) should not be overlooked, particularly when comparing or combining scintillometry with other measurement techniques and model simulations
Emission factors from road dust resuspension in a Mediterranean freeway
Particulate matter emissions from paved roads are currently one of the main challenges for a sustainable transport in Europe. Emissions are scarcely estimated due to the lack of knowledge about the resuspension process severely hampering a reliable simulation of PM and heavy metals concentrations in large cities and evaluation of population exposure. In this study the Emission Factors from road dust resuspension on a Mediterranean freeway were estimated per single vehicle category and PM component (OC, EC, mineral dust and metals) by means of the deployment of vertical profiles of passive samplers and terminal concentration estimate. The estimated PM10 emission factors varied from 12 to 47 mg VKT?1 (VKT: Vehicle Kilometer Traveled) with an average value of 22.7 ? 14.2 mg VKT?1. Emission Factors for heavy and light duty vehicles, passenger cars and motorbikes were estimated, based on average fleet composition and EPA ratios, in 187e733 mg VKT?1, 33e131 VKT?1, 9.4e36.9 VKT?1 and 0.8e3.3 VKT?1, respectively. These range of values are lower than previous estimates in Mediterranean urban roads, probably due to the lower dust reservoir on freeways. PM emitted material was dominated by mineral dust (9e10 mg VKT?1), but also OC and EC were found to be major components and approximately 14 e25% and 2e9% of average PM exhaust emissions from diesel passenger cars on highways respectively
Radioactive dispersion analysis for hypothetical nuclear power plant (NPP) candidate site in Perak state, Malaysia
Malaysia is planning to build a nuclear power plant (NPP) by 2030 to diversify the national electricity supply and resources. Selection of an NPP site must consider various factors, especially nuclear safety consideration to fulfil the nuclear safety objectives. Environmental Risk Assessment Analysis is a part of safety requirements by the International Atomic Energy Agency (IAEA) prior to the NPP commissioning process. Risk Assessments Analysis (RIA) is compulsory for the NPP site evaluation. One of RIA methods are Radioactive Dispersion Analysis using probabilistic risk analysis software. It is also important to perform studies to estimate the impact to the neighbouring population in the case of a nuclear accident at the power plant. In the present work, aimed to study the impact of a hypothetical nuclear accident by simulating the dispersion pattern of radionuclides originated from a candidate site at Manjung, Perak. The work has been performed using the HotSpot Health Physics codes. Two types of radionuclides have been considered namely 137Cs and 131I. In calculations, the initial concentration of radioactive materials of Fukushima Daiichi accident data are used which are 2.06 x 1016 Bq and 1.68 x 1017 Bq respectively for the two radionuclides. The result shows that the dispersion distance obtained from both software are not the same. It shows that 137Cs and 131I can be dispersed as far as 16 km and 80 km away from the site during radiological accident respectively, reaching major towns in Perak. Using HOTSPOT, the estimated total effective dose equivalent (TEDE) for 137Cs and 131I at major towns in Perak such as Lumut and Sitiawan are 1.2 mSv and 9.9 mSv. As for Taiping, Ipoh, Kampar, and Teluk Intan the estimated TEDE is around 0.2 mSv and 1.6 mSv respectively. In conclusion, the dispersion can reach as far as 80 km from the site. However, estimated annual effective dose is not more than 1 mSv limit, which is considered acceptable in the point of view of radiological health risk for human and the environment
- …
