617 research outputs found
The Jefferson Lab Frozen Spin Target
A frozen spin polarized target, constructed at Jefferson Lab for use inside a
large acceptance spectrometer, is described. The target has been utilized for
photoproduction measurements with polarized tagged photons of both longitudinal
and circular polarization. Protons in TEMPO-doped butanol were dynamically
polarized to approximately 90% outside the spectrometer at 5 T and 200--300 mK.
Photoproduction data were acquired with the target inside the spectrometer at a
frozen-spin temperature of approximately 30 mK with the polarization maintained
by a thin, superconducting coil installed inside the target cryostat. A 0.56 T
solenoid was used for longitudinal target polarization and a 0.50 T dipole for
transverse polarization. Spin-lattice relaxation times as high as 4000 hours
were observed. We also report polarization results for deuterated propanediol
doped with the trityl radical OX063.Comment: 11 pages, 12 figures, preprint submitted to Nuclear Instruments and
Methods in Physics Research, Section
Evidence for from photoproduction and consequence for chiral-symmetry restoration at high mass
We report a partial-wave analysis of new data on the double-polarization
variable for the reactions and
and of further data published earlier. The analysis within the Bonn-Gatchina
(BnGa) formalism reveals evidence for a poorly known baryon resonance, the
one-star . This is the lowest-mass resonance with
spin-parity . Its mass is significantly higher than the mass of its
parity partner which is the lowest-mass
resonance with spin-parity . It has been suggested that chiral
symmetry might be restored in the high-mass region of hadron excitations, and
that these two resonances should be degenerate in mass. Our findings are in
conflict with this prediction.Comment: 5 pages, 3 figures; Physics Letters B in pres
Hyperonic mixing in five-baryon double-strangeness hypernuclei in a two-channel treatment
Properties of hypernuclei H and He are studied in a two-channel approach with explicit treatment of
coupling of channels ^3\text{Z}+\Lambda+\Lambda and \alpha+\Xi. Diagonal
\Lambda\Lambda and coupling \Lambda\Lambda-\Xi N interactions are derived
within G-matrix procedure from Nijmegen meson-exchange models. Bond energy
\Delta B_{\Lambda\Lambda} in He exceeds significantly
that in H due to the channel coupling. Diagonal \Xi\alpha
attraction amplifies the effect, which is sensitive also to \Lambda-core
interaction. The difference of the \Delta B_{\Lambda\Lambda} values can be an
unambiguous signature of the \Lambda\Lambda-\Xi N coupling in \Lambda\Lambda
hypernuclei. However, improved knowledge of the hyperon-nucleus potentials is
needed for quantitative extraction of the coupling strength from future data on
the \Lambda\Lambda hypernuclear binding energies.Comment: 11 pages with 3 figures; Phys. Rev. C, accepte
Orientation of Vortices in a Superconducting Thin-Film: Quantitative Comparison of Spin-Polarized Neutron Reflectivity and Magnetization
We present a quantitative comparison of the magnetization measured by
spin-polarized neutron reflectivity (SPNR) and DC magnetometry on a 1370 \AA\
-thick Nb superconducting film. As a function of magnetic field applied in the
film plane, SPNR exhibits reversible behavior whereas the DC magnetization
shows substantial hysteresis. The difference between these measurements is
attributed to a rotation of vortex magnetic field out of the film plane as the
applied field is reduced. Since SPNR measures only the magnetization parallel
to the film plane whereas DC magnetization is strongly influenced by the
perpendicular component of magnetization when there is a slight sample tilt,
combining the two techniques allows one to distinguish two components of
magnetization in a thin film.Comment: 12 pages, 8 figures, It will be printed in PRB, Oct. 200
Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive
π
+
electroproduction reaction
γ
∗
p
→
n
π
+
. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is
1.1
<
W
<
3
GeV and
1
<
Q
2
<
6
GeV
2
. Results were obtained for about 6000 bins in
W
,
Q
2
,
cos
(
θ
∗
)
, and
ϕ
∗
. Except at forward angles, very large target-spin asymmetries are observed over the entire
W
region. Reasonable agreement is found with phenomenological fits to previous data for
W
<
1.6
GeV, but very large differences are seen at higher values of
W
. A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of
Q
2
, for resonances with masses as high as 2.4 GeV
Differential cross sections and recoil polarizations for the reaction gamma p -> K+ Sigma0
High-statistics measurements of differential cross sections and recoil
polarizations for the reaction have been
obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass
energies () from 1.69 to 2.84 GeV, with an extensive coverage in the
production angle. Independent measurements were made using the
() and () final-state topologies,
and were found to exhibit good agreement. Our differential cross sections show
good agreement with earlier CLAS, SAPHIR and LEPS results, while offering
better statistical precision and a 300-MeV increase in coverage.
Above GeV, - and -channel Regge scaling behavior
can be seen at forward- and backward-angles, respectively. Our recoil
polarization () measurements represent a substantial increase in
kinematic coverage and enhanced precision over previous world data. At forward
angles we find that is of the same magnitude but opposite sign as
, in agreement with the static SU(6) quark model prediction of
. This expectation is violated in some mid- and
backward-angle kinematic regimes, where and are of
similar magnitudes but also have the same signs. In conjunction with several
other meson photoproduction results recently published by CLAS, the present
data will help constrain the partial wave analyses being performed to search
for missing baryon resonances.Comment: 23 pages, 17 figure
Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega
High-statistics differential cross sections and spin density matrix elements
for the reaction gamma p -> p omega have been measured using the CLAS at
Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV.
Results are reported in 112 10-MeV wide CM energy bins, each subdivided into
cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega
photoproduction measurements to date. A number of prominent structures are
clearly present in the data. Many of these have not previously been observed
due to limited statistics in earlier measurements
Coherent Photoproduction of pi^+ from 3^He
We have measured the differential cross section for the
He reaction. This reaction was studied using
the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons
produced with the Hall-B bremsstrahlung tagging system in the energy range from
0.50 to 1.55 GeV were incident on a cryogenic liquid He target. The
differential cross sections for the He
reaction were measured as a function of photon-beam energy and pion-scattering
angle. Theoretical predictions to date cannot explain the large cross sections
except at backward angles, showing that additional components must be added to
the model.Comment: 11 pages, 16 figure
- …
