3,822 research outputs found

    Strange Quark Contribution to the Nucleon Spin from Electroweak Elastic Scattering Data

    Full text link
    The total contribution of strange quarks to the intrinsic spin of the nucleon can be determined from a measurement of the strange-quark contribution to the nucleon's elastic axial form factor. We have studied the strangeness contribution to the elastic vector and axial form factors of the nucleon, using all available elastic electroweak scattering data. Specifically, we combine elastic νp\nu p and νˉp\bar{\nu} p scattering cross section data from the Brookhaven E734 experiment with elastic epep and quasi-elastic eded and ee-4^4He scattering parity-violating asymmetry data from the SAMPLE, HAPPEx, G0 and PVA4 experiments. We have not only determined these form factors at individual values of momentum-transfer (Q2Q^2), as has been done recently, but also have fit the Q2Q^2-dependence of these form factors using simple functional forms. We present the results of these fits using existing data, along with some expectations of how our knowledge of these form factors can be improved with data from the MicroBooNE experiment planned at Fermilab.Comment: Proceedings for SPIN 2010 Conference, Juelich, Germany, September 27 - October 2, 2010; 7 pages, 2 figure

    Strange Quark Contribution to the Nucleon Spin from Electroweak Elastic Scattering Data

    Full text link
    The total contribution of strange quarks to the intrinsic spin of the nucleon can be determined from a measurement of the strange-quark contribution to the nucleon's elastic axial form factor. We have studied the strangeness contribution to the elastic vector and axial form factors of the nucleon, using elastic electroweak scattering data. Specifically, we combine elastic νp\nu p and νˉp\bar{\nu} p scattering cross section data from the Brookhaven E734 experiment with elastic epep and quasi-elastic eded and ee-4^4He scattering parity-violating asymmetry data from the SAMPLE, HAPPEx, G0 and PVA4 experiments. We have not only determined these form factors at individual values of momentum-transfer (Q2Q^2), but also have fit the Q2Q^2-dependence of these form factors using simple functional forms. We present the results of these fits, along with some expectations of how our knowledge of these form factors can be improved with data from Fermilab experiments.Comment: 3 pages, 1 figure, CIPANP 201

    Differential cross section for neutron-proton bremsstrahlung

    Get PDF
    The neutron-proton bremsstrahlung process (npnpγ)(np \to np\gamma) is known to be sensitive to meson exchange currents in the nucleon-nucleon interaction. The triply differential cross section for this reaction has been measured for the first time at the Los Alamos Neutron Science Center, using an intense, pulsed beam of up to 700 MeV neutrons to bombard a liquid hydrogen target. Scattered neutrons were observed at six angles between 12^\circ and 32^\circ, and the recoil protons were observed in coincidence at 12^\circ, 20^\circ, and 28^\circ on the opposite side of the beam. Measurement of the neutron and proton energies at known angles allows full kinematic reconstruction of each event. The data are compared with predictions of two theoretical calculations, based on relativistic soft-photon and non-relativistic potential models.Comment: 5 pages, 3 figure

    Physical Activity Measures in the Healthy Communities Study

    Get PDF
    The risk of obesity is reduced when youth engage in recommended levels of physical activity (PA). For that reason, public health organizations in the U.S. have encouraged communities to implement programs and policies designed to increase PA in youth, and many communities have taken on that challenge. However, the long-term effects of those programs and policies on obesity are largely unknown. The Healthy Communities Study is a large-scale observational study of U.S. communities that is examining the characteristics of programs and policies designed to promote healthy behaviors (e.g., increase PA and improve diet) and determining their association with obesity-related outcomes. The purpose of this paper is to describe the methods used to measure PA in children and the personal and community factors that may influence it. The study used both self-reported and objective measures of PA, and measured personal, family, and home influences on PA via three constructs: (1) PA self-schema; (2) parental support; and (3) parental rules regarding PA. Neighborhood and community factors related to PA were assessed using three measures: (1) child perceptions of the neighborhood environment; (2) availability of PA equipment; and (3) attributes of the child’s street segment via direct observation. School influences on children’s PA were assessed via three constructs: (1) school PA policies; (2) child perceptions of the school PA environment; and (3) school outdoor PA environment. These measures will enable examination of the associations between characteristics of community PA programs and policies and obesity-related outcomes in children and youth

    A Model for the Global Quantum Efficiency for a TPB-based Wavelength-Shifting System used with Photomultiplier Tubes in Liquid Argon in MicroBooNE

    Full text link
    We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (NPEN_{\rm PE}) given the known systematic errors on the simulation parameters. We compare results from four measurements of the NPEN_{\rm PE} determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of 0.0055±0.00090.0055\pm0.0009 for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.Comment: final version accepted for publication by JINS

    Strange form factors of the nucleon in a two-component model

    Full text link
    The strange form factors of the nucleon are studied in a two-component model consisting of a three-quark intrinsic structure surrounded by a meson cloud. A comparison with the available experimental world data from the SAMPLE, PVA4, HAPPEX and G0 collaborations shows a good overall agreement. The strange magnetic moment is found to be positive, 0.315 nm.Comment: 11 pages, 2 tables, 5 figures, accepted for publication in J. Phys. G. Revised version, new figures, extra table, new results, updated reference

    Signals for strange quark contributions to the neutrino (antineutrino) scattering in quasi-elastic region

    Full text link
    Strange quark contributions to the neutrino (antineutrino) scattering are investigated on the elastic neutrino-nucleon scattering and the neutrino-nucleus scattering for 12C target in the quasi-elastic region on the incident energy of 500 MeV, within the framework of a relativistic single particle model. For the neutrino-nucleus scattering, the effects of final state interaction for the knocked-out nucleon are included by a relativistic optical potential. In the cross sections we found some cancellations of the strange quark contributions between the knocked-out protons and neutrons. Consequently, the asymmetries between the incident neutrino and antineutrino which is the ratio of neutral current to charged current, and the difference between the asymmetries are shown to be able to yield more feasible quantities for the strangeness effects. In order to explicitly display importance of the cancellations, results of the exclusive reaction 16O(\nu, \nu' p) are additionally presented for detecting the strangeness effects.Comment: 14 pages, 8 figures, submitted to Phys. Lett.

    Anisotropic optical response of the diamond (111)-2x1 surface

    Full text link
    The optical properties of the 2×\times1 reconstruction of the diamond (111) surface are investigated. The electronic structure and optical properties of the surface are studied using a microscopic tight-binding approach. We calculate the dielectric response describing the surface region and investigate the origin of the electronic transitions involving surface and bulk states. A large anisotropy in the surface dielectric response appears as a consequence of the asymmetric reconstruction on the surface plane, which gives rise to the zigzag Pandey chains. The results are presented in terms of the reflectance anisotropy and electron energy loss spectra. While our results are in good agreement with available experimental data, additional experiments are proposed in order to unambiguously determine the surface electronic structure of this interesting surface.Comment: REVTEX manuscript with 6 postscript figures, all included in uu file. Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.html Submitted to Phys. Rev.
    corecore