5,343 research outputs found
The site of synthesis of the iron-sulfur subunits of the flavoprotein and iron-protein fractions of human NADH dehydrogenase
The site of synthesis of the iron-sulfur subunits of the flavoprotein and iron-protein fractions of the human respiratory chain NADH dehydrogenase has been investigated to test the possibility that any of them is synthesized in mitochondria. For this purpose, antibodies specific for individual subunits of the bovine enzyme, which cross- reacted with the homologous human subunits in immunoblot assays, were tested against HeLa cell mitochondrial proteins labeled in vivo with [35S]methionine in the absence or presence of inhibitors of mitochondrial or cytoplasmic protein synthesis. The results clearly indicated that all the iron-sulfur subunits of the flavoprotein and iron-protein fractions of human complex I are synthesized in the cytosol and are, therefore, encoded in nuclear genes
Giant Stark effect in the emission of single semiconductor quantum dots
We study the quantum-confined Stark effect in single InAs/GaAs quantum dots
embedded within a AlGaAs/GaAs/AlGaAs quantum well. By significantly increasing
the barrier height we can observe emission from a dot at electric fields of
-500 kV/cm, leading to Stark shifts of up to 25 meV. Our results suggest this
technique may enable future applications that require self-assembled dots with
transitions at the same energy
Unification in the Description Logic EL
The Description Logic EL has recently drawn considerable attention since, on
the one hand, important inference problems such as the subsumption problem are
polynomial. On the other hand, EL is used to define large biomedical
ontologies. Unification in Description Logics has been proposed as a novel
inference service that can, for example, be used to detect redundancies in
ontologies. The main result of this paper is that unification in EL is
decidable. More precisely, EL-unification is NP-complete, and thus has the same
complexity as EL-matching. We also show that, w.r.t. the unification type, EL
is less well-behaved: it is of type zero, which in particular implies that
there are unification problems that have no finite complete set of unifiers.Comment: 31page
Recommended from our members
Unique structural properties associated with mouse prion Δ105-125 protein
Murine prion protein deleted for residues 105-125 is intrinsically neurotoxic and mediates a TSE-like phenotype in transgenic mice. Equivalent and overlapping deletions were expressed in E.coli, purified and analyzed. Among mutants spanning the region 95-135, a construct lacking solely residues 105-125 had distinct properties when compared with the full-length prion protein 23-231 or other deletions. This distinction was also apparent followed expression in eukaryotic cells. Unlike the full-length protein, all deletion mutants failed to bind to synthetic membranes in vitro. These data suggest a novel structure for the 105-125 deleted variant that may relate to its biological propertie
Budget impact of adding ivabradine to standard of care in patients with chronic systolic heart failure in the United States
BACKGROUND: Heart failure (HF) costs 37,507; non-HF CV = 17,904. The annualized wholesale acquisition cost of ivabradine was 0.01 and 991,256 and 13,849,262 and 0.01 for the commercial population and $0.24 for the Medicare Advantage population.
CONCLUSIONS: Adding ivabradine to SoC led to lower average annual treatment costs. The negative PMPM budget impact indicates that ivabradine is an affordable option for U.S. payers
Impacts of composition and beta irradiation on phase separation in multiphase amorphous calcium borosilicates
Borosilicate glasses for nuclear waste applications are limited in waste loading by the precipitation of water-soluble molybdates. In order to increase storage efficiency, new compositions are sought out that trap molybdenum in a water-durable CaMoO4 crystalline phase. Factors affecting CaMoO4 combination and glass-in-glass phase separation in calcium borosilicate systems as a function of changing [MoO3] and [B2O3] are examined in this study in order to understand how competition for charge balancers affects phase separation. It further examines the influence of radiation damage on structural modifications using 0.77 to 1.34 GGy of 2.5 MeV electron radiation that replicates inelastic collisions predicted to occur over long-term storage. The resulting microstructure of separated phases and the defect structure were analyzed using electron microscopy, XRD, Raman and EPR spectroscopy prior to and post irradiation. Synthesized calcium borosilicates are observed to form an unusual heterogeneous microstructure composed of three embedded amorphous phases with a solubility limit ~ 2.5 mol% MoO3. Increasing [B2O3] increased the areas of immiscibility and order of (MoO4)2 − anions, while increasing [MoO3] increased both the phase separation and crystallization temperature resulting in phases closer to metastable equilibrium, and initiated clustered crystallization for [MoO3] > 2.5 mol%. β-irradiation was found to have favorable properties in amorphous systems by creating structural disorder and defect assisted ion migration that thus prevented crystallization. It also increased reticulation in the borosilicate network through 6-membered boroxyl ring and Si ring cleavage to form smaller rings and isolated units. This occurred alongside an increased reduction of Mo6 + with dose that can be correlated to molybdenum solubility. In compositions with existing CaMoO4 crystallites, radiation caused a scattering effect, though the crystal content remained unchanged. Therefore β-irradiation can preferentially prevent crystallization in calcium borosilicates for [MoO3] < 2.5 mol%, but has a smaller impact on systems with existing CaMoO4 crystallites
Tunable Indistinguishable Photons From Remote Quantum Dots
Single semiconductor quantum dots have been widely studied within devices
that can apply an electric field. In the most common system, the low energy
offset between the InGaAs quantum dot and the surrounding GaAs material limits
the magnitude of field that can be applied to tens of kVcm^-1, before carriers
tunnel out of the dot. The Stark shift experienced by the emission line is
typically 1 meV. We report that by embedding the quantum dots in a quantum well
heterostructure the vertical field that can be applied is increased by over an
order of magnitude whilst preserving the narrow linewidths, high internal
quantum efficiencies and familiar emission spectra. Individual dots can then be
continuously tuned to the same energy allowing for two-photon interference
between remote, independent, quantum dots
- …
