710 research outputs found
Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation
The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A crucial question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state 13C NMR spectroscopy between the retinal chromophore and the β4 strand of EL2 show that the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein-coupled receptor. © 2009 Nature America, Inc. All rights reserved
Defining the mode of action of cisplatin combined with NUC-1031, a phosphoramidate modification of gemcitabine
Funding: DP and GMZ were funded by Nucana plc (XIUN20-18695) (https://www.nucana.com).The combination of gemcitabine with platinum agents is a widely used chemotherapy regimen for a number of tumour types. Gemcitabine plus cisplatin remains the current therapeutic choice for biliary tract cancer. Gemcitabine is associated with multiple cellular drug resistance mechanisms and other limitations and has thereforelined in use. NUC-1031 (Acelarin) is a phosphorylated form of gemcitabine, protected by the addition of a phosphoramidate moiety, developed to circumvent the key limitations and generate high levels of the cytotoxic metabolite, dFdCTP. The rationale for combination of gemcitabine and cisplatin is determined by in vitro cytotoxicity. This, however, does not offer an explanation of how these drugs lead to cell death. In this study we investigate the mechanism of action for NUC-1031 combined with cisplatin as a rationale for treatment. NUC-1031 is metabolised to dFdCTP, detectable up to 72 h post-treatment and incorporated into DNA, to stall the cell cycle and cause DNA damage in biliary tract and ovarian cancer cell lines. In combination with cisplatin, DNA damage was increased and occurred earlier compared to monotherapy. The damage associated with NUC-1031 may be potentiated by a second mechanism, via binding the RRM1 subunit of ribonucleotide reductase and perturbing the nucleotide pools; however, this may be mitigated by increased RRM1 expression. The implication of this was investigated in case studies from a Phase I clinical trial to observe whether baseline RRM1 expression in tumour tissue at time of diagnosis correlates with patient survival.Peer reviewe
Association of Sedentary Time with Mortality Independent of Moderate to Vigorous Physical Activity
BACKGROUND: Sedentary behavior has emerged as a novel health risk factor independent of moderate to vigorous physical activity (MVPA). Previous studies have shown self-reported sedentary time to be associated with mortality; however, no studies have investigated the effect of objectively measured sedentary time on mortality independent of MVPA. The objective our study was to examine the association between objectively measured sedentary time and all-cause mortality. METHODS: 7-day accelerometry data of 1906 participants aged 50 and over from the U.S. nationally representative National Health and Nutrition Examination Survey (NHANES) 2003-2004 were analyzed. All-cause mortality was assessed from the date of examination through December 31, 2006. RESULTS: Over an average follow-up of 2.8 years, there were 145 deaths reported. In a model adjusted for sociodemographic factors, lifestyle factors, multiple morbidities, mobility limitation, and MVPA, participants in third quartile (hazard ratio (HR):4.05; 95%CI:1.55-10.60) and fourth quartile (HR:5.94; 95%CI: 2.49-14.15) of having higher percent sedentary time had a significantly increased risk of death compared to those in the lowest quartile. CONCLUSIONS: Our study suggests that sedentary behavior is a risk factor for mortality independent of MVPA. Further investigation, including studies with longer follow-up, is needed to address the health consequences of sedentary behavior
Effects of alpha fetoprotein on escape of Bel 7402 cells from attack of lymphocytes
BACKGROUND: Involvement of AFP against apoptosis of tumor cell has been implicated in its evasion of immune surveillance. However, the molecular events of immune escape mechanisms are still unknown. The major observations reported here relate to a possible mechanism by which heptoloma Bel 7402 cells escape immune surveillance in vitro. METHODS: Western blotting and a well-characterized cofocal scanning image were performed to analyze the expression of Fas/FasL and caspase-3 in co-cultured Bel 7402 and Jurkat cells. RESULTS: After co-culture with Jurkat cells, up-regulated Fas and reduced FasL expression could be observed. Treatment with AFP could remarkably inhibit the elevated Fas and, whereas, induce the FasL expression in co-cultured Bel 7402 cells. Cells co-culture could induce the expression of caspase-3 in both cells line. The elevated caspase-3 in Bel 7402 cells was abolished following the treatment of AFP. The expression of caspase-3 was elevated in co-cultured Jurkat cells treated with AFP. No detectable change on the expression of survivin was examined in both cells line. Monoclonal antibody against AFP treatment alone did not obviously influence the growth of cells, as well as the expression of Fas/FasL and caspase-3. However, the effect of AFP could be blocked by antibody. CONCLUSIONS: our results provide evidence that AFP could promote the escape of liver cancer cells from immune surveillance through blocking the caspase signal pathway of tumor cells and triggering the Fas/FasL interaction between tumor cells and lymphocytes
An influenza A (H3N2) virus outbreak in the Kingdom of Cambodia during the COVID-19 pandemic of 2020.
BACKGROUND: Global influenza virus circulation decreased during the COVID-19 pandemic, possibly due to widespread community mitigation measures. Cambodia eased some COVID-19 mitigation measures in June and July 2020. On 20 August a cluster of respiratory illnesses occurred among residents of a pagoda, including people who tested positive for influenza A but none who were positive for SARS-CoV-2. METHODS: A response team was deployed on 25 August 2020. People with influenza-like illness (ILI) were asked questions regarding demographics, illness, personal prevention measures, and residential arrangements. Respiratory swabs were tested for influenza and SARS-Cov-2 by real-time reverse transcription PCR, and viruses were sequenced. Sentinel surveillance data were analyzed to assess recent trends in influenza circulation in the community. RESULTS: Influenza A (H3N2) viruses were identified during sentinel surveillance in Cambodia in July 2020 prior to the reported pagoda outbreak. Among the 362 pagoda residents, 73 (20.2%) ILI cases were identified and 40 were tested, where 33/40 (82.5%) confirmed positive for influenza A (H3N2). All 40 were negative for SARS-CoV-2. Among the 73 residents with ILI, none were vaccinated against influenza, 47 (64%) clustered in 3/8 sleeping quarters, 20 (27%) reported often wearing a mask, 27 (36%) reported often washing hands, and 11 (15%) reported practicing social distancing. All viruses clustered within clade 3c2.A1 close to strains circulating in Australia in 2020. CONCLUSIONS: Circulation of influenza viruses began in the community following the relaxation of national COVID-19 mitigation measures, and prior to the outbreak in a pagoda with limited social distancing. Continued surveillance and influenza vaccination are required to limit the impact of influenza globally
Divergent Pathways in COS-7 Cells Mediate Defective Internalization and Intracellular Routing of Truncated G-CSFR Forms in SCN/AML
Expression of truncated G-CSFR forms in patients with SCN/AML induces hyperproliferation and prolonged cell survival. Previously, we showed that ligand internalization is delayed and degradation of truncated G-CSFR forms is defective in patients with SCN/AML.In this study, we investigated the potential roles of dileucine and tyrosine-based motifs within the cytoplasmic domain of the G-CSFR in modulating ligand/receptor internalization. Using standard binding assays with radiolabeled ligand and COS-7 cells, substitutions in the dileucine motif or deletion of tyrosine residues in the G-CSFR did not alter internalization. Attachment of the transferrin receptor YTRF internalization motif to a truncated G-CSFR form from a patient with SCN/AML corrected defective internalization, but not receptor degradation suggesting that receptor internalization and degradation occur independently via distinct domains and/or processes.Our data suggest that distinct domains within the G-CSFR mediate separate processes for receptor internalization and degradation. Our findings using standard binding assays differ from recently published data utilizing flow cytometry
A Randomized Trial to Assess Anti-HIV Activity in Female Genital Tract Secretions and Soluble Mucosal Immunity Following Application of 1% Tenofovir Gel
Preclinical and early phase clinical microbicide studies have not consistently predicted the outcome of efficacy trials. To address this gap, candidate biomarkers of microbicide pharmacodynamics and safety were evaluated in a double-blind, placebo-controlled trial of tenofovir gel, the first microbicide to demonstrate significant protection against HIV acquisition.30 women were randomized to apply a single daily dose of tenofovir or placebo gel for 14 consecutive days. Anti-HIV activity was measured in cervicovaginal lavage (CVL) on Days 0, 3, 7, 14 and 21 by luciferase assay as a surrogate marker of pharmacodynamics. Endogenous activity against E. coli and HSV-2 and concentrations of immune mediators were quantified in CVL as candidate biomarkers of safety. Tenofovir levels were measured in CVL and blood.A significant increase in anti-HIV activity was detected in CVL from women who applied tenofovir gel compared to their endogenous anti-HIV activity in genital tract secretions on Day 0 and compared to activity in CVL from women in the placebo group. The activity correlated significantly with CVL concentration of tenofovir (r = 0.6, p<0.001) and fit a sigmoid E(max) pharmacodynamic model. Anti-HIV activity in CVL from women who applied tenofovir persisted when virus was introduced in semen, whereas endogenous anti-HIV activity decreased. Tenofovir did not trigger an inflammatory response or induce sustained loss in endogenous antimicrobial activity or immune mediators.Tenofovir gel had no deleterious impact on soluble mucosal immunity. The increased anti-HIV activity in CVL, which persisted in the presence of semen and correlated with tenofovir concentration, is consistent with the efficacy observed in a recent clinical trial. These results promote quantified CVL anti-HIV activity as a surrogate of tissue pharmacodynamics and as a potential biomarker of adherence to product. This simple, feasible and inexpensive bioassay may promote the development of models more predictive of microbicide efficacy.ClinicalTrials.gov NCT00594373
Anti-emetic drugs in oncology: pharmacology and individualization by pharmacogenetics
Objective Nausea and vomiting are the most distressful side effects of cytotoxic drugs in cancer patients. Antiemetics are commonly used to reduce these side effects. However, the current antiemetic efficacy is about 70–80% in patients treated with highly-emetogenic cytotoxic drugs. One of the potential factors explaining this suboptimal response is variability in genes encoding enzymes and proteins which play a role in metabolism, transport and receptors related to antiemetic drugs. Aim of this review was to describe the pharmacology and pharmacogenetic concepts of of antiemetics in oncology. Method Pharmacogenetic and pharmacology studies of antiemetics in oncology published between January 1997 and February 2010 were searched in PubMed. Furthermore, related textbooks were also used for exploring the pharmacology of antiemetic drugs. The antiemetic drugs which were searched were the 5-hydroxytryptamine 3 receptor antagonists (5-HT3RAs), dopamine antagonists, corticosteroids, benzodiazepines, cannabinoids, antihistamines and neurokinin-1 antagonists. Result The 5-HT3RAs are widely used in highly emetogenic chemotherapy in combination with dexamethasone and a neurokinin-1 antagonist, especially in acute phase. However, the dopamine antagonists and benzodiazepines were found more appropriate for use in breakthrough and anticipatory symptoms or in preventing the delayed phase of chemotherapy induced nausea and vomiting. The use of cannabinoids and antihistamines need further investigation. Only six articles on pharmacogenetics of the 5-HT3RAs in highly emetogenic chemotherapy are published. Specifically, these studies investigated the association of the efficacy of 5-HT3RAs and variants in the multi drug resistance 1 (MDR1) gene, 5-HT3A,B and C receptor genes and CYP2D6 gene. The pharmacogenetic studies of the other antiemetics were not found in this review. Conclusion It is concluded that pharmacogenetic studies with antiemetics are sparse. It is too early to implement results of pharmacogenetic association studies of antiemetic drugs in clinical practice: confirmation of early findings is required
Etiologic Diagnosis of Lower Respiratory Tract Bacterial Infections Using Sputum Samples and Quantitative Loop-Mediated Isothermal Amplification
Etiologic diagnoses of lower respiratory tract infections (LRTI) have been relying primarily on bacterial cultures that often fail to return useful results in time. Although DNA-based assays are more sensitive than bacterial cultures in detecting pathogens, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. Here we report a nationwide cohort study on 2986 suspected LRTI patients across P. R. China. We compared the performance of a DNA-based assay qLAMP (quantitative Loop-mediated isothermal AMPlification) with that of standard bacterial cultures in detecting a panel of eight common respiratory bacterial pathogens from sputum samples. Our qLAMP assay detects the panel of pathogens in 1047(69.28%) patients from 1533 qualified patients at the end. We found that the bacterial titer quantified based on qLAMP is a predictor of probability that the bacterium in the sample can be detected in culture assay. The relatedness of the two assays fits a logistic regression curve. We used a piecewise linear function to define breakpoints where latent pathogen abruptly change its competitive relationship with others in the panel. These breakpoints, where pathogens start to propagate abnormally, are used as cutoffs to eliminate the influence of contaminations from normal flora. With help of the cutoffs derived from statistical analysis, we are able to identify causative pathogens in 750 (48.92%) patients from qualified patients. In conclusion, qLAMP is a reliable method in quantifying bacterial titer. Despite the fact that there are always latent bacteria contaminated in sputum samples, we can identify causative pathogens based on cutoffs derived from statistical analysis of competitive relationship
- …
