2,134 research outputs found

    Slipping zone location in squeeze flow

    No full text
    the original publication is available at http://www.springerlink.com/content/f1611lmr64836780/International audienceIn squeeze flow rheometry, the main problem is the boundary condition between the squeezed material and the plates. Therefore, the crucial assumption is to know the location and the shape of the sample part where wall slip may or may not occur. This question is investigated from experimental results. For this, squeeze flow experiments are carried out to visualize the flow pattern at the walls. Influence of boundary conditions is particularly studied using different plate surface condition. As a result, with wall slipping conditions, we propose a flow modelling divided into two zones: a circular central zone of the sample sticks on the plates and, beyond that zone, the sample slips at the plates with friction

    On the optimisation of a texture analyser in squeeze flow geometry

    No full text
    The original contribution is available at http://www.sciencedirect.com/science/article/pii/S0263224106000327International audienceThis paper describes how the range of application of a texture analyser, used for mechanical tests of solids and liquids in the food and cosmetics industry, can be extended to reproduce squeeze flow geometry. It describes the necessary optimisation of the device to ensure parallelism and thermal regulation of the plates during tests. The error on the load cell and the instrument compliance are evaluated. The influence of these artefact measurements is investigated in terms of interpretation of rheological properties of materials

    Using different spatial scale measurements in a geostatistically based approach for mapping atmospheric nitrogen dioxide concentrations. Application to the French Centre region

    Get PDF
    International audiencePassive sampling surveys followed by geostatistical data analysis have become a common and efficient way of mapping background concentrations at regional and urban scale. Traffic related pollution is also a matter of concern as regards people exposure but since it acts at shorter spatiotemporal scales, it is usually not integrated in the same maps. However, to provide more comprehensive information to the authorities and the public, the organisms responsible for air quality monitoring are searching for innovative ways of representing background and roadside concentrations together. A methodology based on geostatistics and the examination of the relationships between season averaged nitrogen dioxide concentrations and auxiliary variables is proposed in this study. It is applied to data collected in the French Centre region

    Rapic project: toward a new generation of inexpensive heat exchanger-reactors for process intensification

    Get PDF
    Process intensification (PI) in chemical production is a major concern of chemical manufacturers. This alternative technology involves transposing syntheses into continuous plug flow reactors with process intensification, leading to a multifunctional heat exchanger-reactor. In this context, the RAPIC R&D project aims to develop an innovative low-cost component (in the 10 kg/hour range). This project deals with the design from the local to the global scale and with testing, from elementary mock-ups to pilot scale. The present paper gives a detailed description of this research project and presents the main results on specification and definition of the reaction channel and the first simple mock-ups

    Engineered inorganic core/shell nanoparticles

    Get PDF
    International audienceIt has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed

    Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine.

    Get PDF
    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine

    Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Israel, Lithuania, Moldova, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland and Turkey.

    Get PDF
    UNLABELLED: EUSOBI and 30 national breast radiology bodies support mammography for population-based screening, demonstrated to reduce breast cancer (BC) mortality and treatment impact. According to the International Agency for Research on Cancer, the reduction in mortality is 40 % for women aged 50-69 years taking up the invitation while the probability of false-positive needle biopsy is <1 % per round and overdiagnosis is only 1-10 % for a 20-year screening. Mortality reduction was also observed for the age groups 40-49 years and 70-74 years, although with "limited evidence". Thus, we firstly recommend biennial screening mammography for average-risk women aged 50-69 years; extension up to 73 or 75 years, biennially, is a second priority, from 40-45 to 49 years, annually, a third priority. Screening with thermography or other optical tools as alternatives to mammography is discouraged. Preference should be given to population screening programmes on a territorial basis, with double reading. Adoption of digital mammography (not film-screen or phosphor-plate computer radiography) is a priority, which also improves sensitivity in dense breasts. Radiologists qualified as screening readers should be involved in programmes. Digital breast tomosynthesis is also set to become "routine mammography" in the screening setting in the next future. Dedicated pathways for high-risk women offering breast MRI according to national or international guidelines and recommendations are encouraged. KEY POINTS: • EUSOBI and 30 national breast radiology bodies support screening mammography. • A first priority is double-reading biennial mammography for women aged 50-69 years. • Extension to 73-75 and from 40-45 to 49 years is also encouraged. • Digital mammography (not film-screen or computer radiography) should be used. • DBT is set to become "routine mammography" in the screening setting in the next future

    RÔLE DE L'OCCUPATION DU SOL VIS À VIS DE LA MODÉLISATION DES FLUX ENERGÉTIQUES ET HYDRIQUES EN MILIEU URBAIN ET PÉRIURBAIN

    Get PDF
    National audienceLe projet Rosenhy vise à étudier l’impact de l’occupation du sol sur la modélisation météorologique et hydrologique en termes de flux énergétiques et hydriques, en milieu urbain et périurbain. Trois sites appartenant aux observatoires français OTHU et ONEVU sont au centre de ce projet. Le quartier urbain hétérogène du Pin sec (Nantes), imperméabilisé à environ 45%, a fait l’objet d’une campagne expérimentale durant le mois de juin 2012, visant à estimer les flux de chaleur sensible et latente avec une haute résolution spatiale et temporelle par rapport aux mesures réalisées en continu sur ce site depuis 5 ans. Deux bassins versant périurbains (La Chézine à Nantes et l’Yzeron à Lyon), avec un taux d’imperméabilisation moins important (environ 10%) mais grandissant depuis plusieurs décennies, sont aussi étudiés. Ces deux derniers sites bénéficient d’un suivi hydrométéorologique depuis 10 ans pour la Chézine et 15 ans pour l’Yzeron. Sur ces trois sites, différentes sources de données d’occupation du sol à différentes résolutions sont disponibles :différentes bases de données géographiques communément utilisées par la communauté scientifique et les collectivités et des données télédétectées (multispectrales et hyperspectrales). L’utilisation de ces données en entrée de différents modèles météorologiques et hydrologiques implique un travail d’analyse et de classification pour adapter les informations aux besoins des modèles. Dans ce projet, les différents modèles adaptés au milieu urbain ou périrubain sont évalués et améliorés. Ainsi, les modèles hydrologiques périrubains sont en développement pour prendre en compte les différentes pratiques de gestion des eaux pluviales existantes (noues, toitures végétalisées, ...). L’utilisation conjointe des données simulées par les différents modèles aidera à déterminer le rôle de la part des surfaces naturelles et artificielles sur les bilans énergétique et hydrique en milieu plus ou moins urbanisé. Le milieu périurbain étant en évolution, le projet s’intéressera aussi à des scénarios d’urbanisation prospectifs en regardant d’une part l’impact de la densification sur les scénarios construits pour l’Yzeron lors du projet AVuPUR (ANR-VMCS, 2008-2011) et d’autre part, en réfléchissant conjointement avec Nantes Métropole, aux possibles voies d’évolution sur le bassin de la Chézine
    corecore