179 research outputs found

    Sox10 contributes to the balance of fate choice in dorsal root ganglion progenitors

    Get PDF
    The development of functional peripheral ganglia requires a balance of specification of both neuronal and glial components. In the developing dorsal root ganglia (DRGs), these compo- nents form from partially-restricted bipotent neuroglial precursors derived from the neural crest. Work in mouse and chick has identified several factors, including Delta/Notch signal- ing, required for specification of a balance of these components. We have previously shown in zebrafish that the Sry-related HMG domain transcription factor, Sox10, plays an unex- pected, but crucial, role in sensory neuron fate specification in vivo. In the same study we described a novel Sox10 mutant allele, sox10baz1, in which sensory neuron numbers are elevated above those of wild-types. Here we investigate the origin of this neurogenic pheno- type. We demonstrate that the supernumerary neurons are sensory neurons, and that enteric and sympathetic neurons are almost absent just as in classical sox10 null alleles; peripheral glial development is also severely abrogated in a manner similar to other sox10 mutant alleles. Examination of proliferation and apoptosis in the developing DRG reveals very low levels of both processes in wild-type and sox10baz1, excluding changes in the bal- ance of these as an explanation for the overproduction of sensory neurons. Using chemical inhibition of Delta-Notch-Notch signaling we demonstrate that in embryonic zebrafish, as in mouse and chick, lateral inhibition during the phase of trunk DRG development is required to achieve a balance between glial and neuronal numbers. Importantly, however, we show that this mechanism is insufficient to explain quantitative aspects of the baz1 phenotype. The Sox10(baz1) protein shows a single amino acid substitution in the DNA binding HMG domain; structural analysis indicates that this change is likely to result in reduced flexibility in the HMG domain, consistent with sequence-specific modification of Sox10 binding to DNA. Unlike other Sox10 mutant proteins, Sox10(baz1) retains an ability to drive neurogenin1 transcription. We show that overexpression of neurogenin1 is sufficient to produce supernu- merary DRG sensory neurons in a wild-type background, and can rescue the sensory neu- ron phenotype of sox10 morphants in a manner closely resembling the baz1 phenotype. We conclude that an imbalance of neuronal and glial fate specification results from the Sox10 (baz1) protein\u2019s unique ability to drive sensory neuron specification whilst failing to drive glial development. The sox10baz1 phenotype reveals for the first time that a Notch-dependent lat- eral inhibition mechanism is not sufficient to fully explain the balance of neurons and glia in the developing DRGs, and that a second Sox10-dependent mechanism is necessary. Sox10 is thus a key transcription factor in achieving the balance of sensory neuronal and glial fates

    A novel subtype of pineal projection neurons expressing melanopsin share a common developmental program with classical projection neurons

    Get PDF
    The zebrafish pineal organ is a photoreceptive structure containing two main neuronal populations (photoreceptors and projections neurons). Here we describe a new pineal cell type that harbors both characteristics of projection neurons and photoreceptors. Indeed, a subpopulation of projection neurons expresses the melanopsin gene opn4xa suggesting photoreceptive properties. This population of hybrid cell fates, share a similar behaviour regarding dependency for BMP and Notch signalling pathways with classical non-photosensitive projection neurons (PNs) suggesting they are closer to the PN population. We describe two distinct types of activity within PNs: an achromatic LIGHT OFF activity in opn4xa-PNs and a LIGHT ON activity elicited by green and blue light in opn4xa+ PNs. Altogether the discovery and characterization of opn4xa+ PNs suggest a previously unanticipated heterogeneity in the projection neuron population

    Pioneer neurog1 expressing cells ingress into the otic epithelium and instruct neuronal specification

    Get PDF
    Neural patterning involves regionalised cell specification. Recent studies indicate that cell dynamics play instrumental roles in neural pattern refinement and progression, but the impact of cell behaviour and morphogenesis on neural specification is not understood. Here we combine 4D analysis of cell behaviours with dynamic quantification of proneural expression to uncover the construction of the zebrafish otic neurogenic domain. We identify pioneer cells expressing neurog1 outside the otic epithelium that migrate and ingress into the epithelialising placode to become the first otic neuronal progenitors. Subsequently, neighbouring cells express neurog1 inside the placode, and apical symmetric divisions amplify the specified pool. Interestingly, pioneer cells delaminate shortly after ingression. Ablation experiments reveal that pioneer cells promote neurog1 expression in other otic cells. Finally, ingression relies on the epithelialisation timing controlled by FGF activity. We propose a novel view for otic neurogenesis integrating cell dynamics whereby ingression of pioneer cells instructs neuronal specification

    Oh, for some simple guidance

    Full text link

    Worm rad1+ homologue

    Full text link

    Spoilt for choice: Pax6 in the retina

    Full text link

    Notch activity in the nervous system: to switch or not switch?

    No full text
    Abstract The Notch pathway is instrumental for cell fate diversification during development. Pioneer studies conducted in Drosophila and more recent work performed in vertebrates have shown that in the nervous system, Notch is reiteratively employed when cells choose between two alternative fates, a process referred to as a binary fate decision. While the early (neural versus epidermal) fate decisions mainly involve an inhibitory effect of Notch on the neural fate, late fate decisions (choice between different subtypes of neural cells) have been proposed to involve a binary switch activity whereby Notch would be instructive for one fate and inhibitory for the other. We re-examine this binary switch model in light of two recent findings made in the vertebrate nervous system. First, in the zebrafish epiphysis, Notch is required to resolve a mixed identity through the inhibition of one specific fate. Second, in the murine telencephalon, Notch regulates the competence of neural progenitors to respond to the JAK/STAT pathway, thereby allowing for the induction of an astrocyte fate. In neither case is Notch instructive for the alternative fate, but rather cooperates with another signalling pathway to coordinate binary fate choices. We also review current knowledge on the molecular cascades acting downstream of Notch in the context of neural subtype diversification, a crucial issue if one is to determine Notch function as an instructive, permissive or inhibitory signal in the various cellular contexts where it is implicated. Finally, we speculate as to how such a 'non-switch' activity could contribute to the expansion of neuronal subtype diversity.</p

    A cluster of non-redundant Ngn1 binding sites is required for regulation of deltaA expression in zebrafish

    Get PDF
    AbstractProneural genes encode bHLH transcription factors that are key regulator of neurogenesis in both vertebrates and invertebrates. How these transcription factors regulate targets required for neural determination and/or specification is beginning to be understood. In this study, we show that zebrafish deltaA is a transcriptional target of proneural factors. Using a combination of transient and stable transgenic reporters, we show that regulation of deltaA by one such proneural factor, Ngn1, requires three clustered E-box binding sites that act in a non-redundant manner. Furthermore, we show that as for other proneural targets, members of the different proneural families regulate deltaA expression via distinct cis-regulatory modules (CRMs). Interestingly, however, while the deltaA CRM regulated by a second proneural factor, Ascl1, has been conserved between delta genes of different species, we show that the Ngn1 CRM has not. These results suggest that evolutionary constraints on the mechanism by which Ngn1 regulates gene expression appear less strict than for Ascl1
    corecore