305 research outputs found
Diversity and structure of human T-Cell receptor β-chain variable region genes
The nucleotide sequences of 27 T-cell receptor β cDNA clones isolated from a human peripheral lymphocyte library were determined and compared to five additional published sequences. These cDNA clones represent 22 distinct T-cell receptor β-chain variable region (Vβ) gene segment sequences, which fall into 15 different Vβ gene subfamilies, each containing six or fewer members. From this analysis, we estimate that the repertoire of expressed human Vβ genes is <59, apparently much smaller than the immunoglobulin heavy chain and light chain variable region (VH and VL) repertoires. Variability plots comparing these human Vβ regions with each other and with published mouse Vβ regions provide evidence for only four hypervariable regions homologous to those seen in comparisons of immunoglobulin V regions. Somatic hypermutation appears to be used infrequently, if at all, in these Vβ genes
Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens
DNA sequence variation within human leukocyte antigen (HLA) genes mediate susceptibility to a wide range of human diseases. The complex genetic structure of the major histocompatibility complex (MHC) makes it difficult, however, to collect genotyping data in large cohorts. Long-range linkage disequilibrium between HLA loci and SNP markers across the major histocompatibility complex (MHC) region offers an alternative approach through imputation to interrogate HLA variation in existing GWAS data sets. Here we describe a computational strategy, SNP2HLA, to impute classical alleles and amino acid polymorphisms at class I (HLA-A, -B, -C) and class II (-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1) loci. To characterize performance of SNP2HLA, we constructed two European ancestry reference panels, one based on data collected in HapMap-CEPH pedigrees (90 individuals) and another based on data collected by the Type 1 Diabetes Genetics Consortium (T1DGC, 5,225 individuals). We imputed HLA alleles in an independent data set from the British 1958 Birth Cohort (N = 918) with gold standard four-digit HLA types and SNPs genotyped using the Affymetrix GeneChip 500 K and Illumina Immunochip microarrays. We demonstrate that the sample size of the reference panel, rather than SNP density of the genotyping platform, is critical to achieve high imputation accuracy. Using the larger T1DGC reference panel, the average accuracy at four-digit resolution is 94.7% using the low-density Affymetrix GeneChip 500 K, and 96.7% using the high-density Illumina Immunochip. For amino acid polymorphisms within HLA genes, we achieve 98.6% and 99.3% accuracy using the Affymetrix GeneChip 500 K and Illumina Immunochip, respectively. Finally, we demonstrate how imputation and association testing at amino acid resolution can facilitate fine-mapping of primary MHC association signals, giving a specific example from type 1 diabetes
A method for gene-based pathway analysis using genomewide association study summary statistics reveals nine new type 1 diabetes associations.
Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes. We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs in additional samples. Replication P-values were skewed (P=9.85×10-11) with 12 of the 22 SNPs showing P<0.05. Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466, P=7.86×10-9), NRP1 (rs722988, 4.88×10-8), BAD (rs694739, 2.37×10-7), CTSB (rs1296023, 2.79×10-7), FYN (rs11964650, P=5.60×10-7), UBE2G1 (rs9906760, 5.08×10-7), MAP3K14 (rs17759555, 9.67×10-7), ITGB1 (rs1557150, 1.93×10-6), and IL7R (rs1445898, 2.76×10-6). The proposed methodology can be applied to other GWAS datasets for which only summary level data are available.This is the final version. It was first published by Wiley at http://onlinelibrary.wiley.com/doi/10.1002/gepi.21853/abstract
Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers.
Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility regions, finding major pathways contributing to risk, with some loci shared across immune disorders. To make genetic comparisons across autoimmune disorders as informative as possible, a dense genotyping array, the Immunochip, was developed, from which we identified four new T1D-associated regions (P < 5 × 10(-8)). A comparative analysis with 15 immune diseases showed that T1D is more similar genetically to other autoantibody-positive diseases, significantly most similar to juvenile idiopathic arthritis and significantly least similar to ulcerative colitis, and provided support for three additional new T1D risk loci. Using a Bayesian approach, we defined credible sets for the T1D-associated SNPs. The associated SNPs localized to enhancer sequences active in thymus, T and B cells, and CD34(+) stem cells. Enhancer-promoter interactions can now be analyzed in these cell types to identify which particular genes and regulatory sequences are causal.This research uses resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Allergy and Infectious Diseases (NIAID), the National Human Genome Research Institute (NHGRI), the National Institute of Child Health and Human Development (NICHD) and JDRF and supported by grant U01 DK062418 from the US National Institutes of Health. Further support was provided by grants from the NIDDK (DK046635 and DK085678) to P.C. and by a joint JDRF and Wellcome Trust grant (WT061858/09115) to the Diabetes and Inflammation Laboratory at Cambridge University, which also received support from the NIHR Cambridge Biomedical Research Centre. ImmunoBase receives support from Eli Lilly and Company. C.W. and H.G. are funded by the Wellcome Trust (089989). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140).
We gratefully acknowledge the following groups and individuals who provided biological samples or data for this study. We obtained DNA samples from the British 1958 Birth Cohort collection, funded by the UK Medical Research Council and the Wellcome Trust. We acknowledge use of DNA samples from the NIHR Cambridge BioResource. We thank volunteers for their support and participation in the Cambridge BioResource and members of the Cambridge BioResource Scientific Advisory Board (SAB) and Management Committee for their support of our study. We acknowledge the NIHR Cambridge Biomedical Research Centre for funding. Access to Cambridge BioResource volunteers and to their data and samples are governed by the Cambridge BioResource SAB. Documents describing access arrangements and contact details are available at http://www.cambridgebioresource.org.uk/. We thank the Avon Longitudinal Study of Parents and Children laboratory in Bristol, UK, and the British 1958 Birth Cohort team, including S. Ring, R. Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton, for preparing and providing the control DNA samples. This study makes use of data generated by the Wellcome Trust Case Control Consortium, funded by Wellcome Trust award 076113; a full list of the investigators who contributed to the generation of the data is available from http://www.wtccc.org.uk/.This is the author accepted manuscript. The final version is available via NPG at http://www.nature.com/ng/journal/v47/n4/full/ng.3245.html
Type 1 Diabetes Genetics Consortium
Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing β cells. Genetic factors account for approximately 50% of the risk for T1D but, by the late 1990s, the genetic basis was limited. The Type 1 Diabetes Genetics Consortium (T1DGC) was formed in 2002 to accelerate discovery of genes contributing to T1D risk through a grant from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) to assemble existing data and samples from affected sib-pair families and to establish new collections. In recognition of the 75th anniversary of the NIDDK, this manuscript highlights the contributions made by the T1DGC to understanding the genetic basis of T1D using both family (for linkage) and case-control (for genome-wide association) designs. The T1DGC conducted large-scale genetic research and used fine mapping to define risk regions. The T1DGC data, results, and samples have been made available to the scientific community, leading to the discovery of more than 100 loci associated with T1D risk, many with small effects and relevant to autoimmune pathways. The T1DGC not only expanded the list of genes contributing to disease risk but also identified noncoding genetic variation in disease-relevant cell types that contribute to the etiology of T1D. The success of the T1DGC and the NIDDK investment in the global consortium is highlighted in its continuing effect on mapping genetic variants to their function and identifying pathways that provide new targets for the prediction, prevention, and treatment of T1D
Common variants at theCHEK2gene locus and risk of epithelial ovarian cancer
Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene.Other Research Uni
Genome-Wide Association Study of Cryptosporidiosis in Infants Implicates PRKCA.
Diarrhea is a major cause of both morbidity and mortality worldwide, especially among young children. Cryptosporidiosis is a leading cause of diarrhea in children, particularly in South Asia and sub-Saharan Africa, where it is responsible for over 200,000 deaths per year. Beyond the initial clinical presentation of diarrhea, it is associated with long-term sequelae such as malnutrition and neurocognitive developmental deficits. Risk factors include poverty and overcrowding, and yet not all children with these risk factors and exposure are infected, nor do all infected children develop symptomatic disease. One potential risk factor to explain these differences is their human genome. To identify genetic variants associated with symptomatic cryptosporidiosis, we conducted a genome-wide association study (GWAS) examining 6.5 million single nucleotide polymorphisms (SNPs) in 873 children from three independent cohorts in Dhaka, Bangladesh, namely, the Dhaka Birth Cohort (DBC), the Performance of Rotavirus and Oral Polio Vaccines in Developing Countries (PROVIDE) study, and the Cryptosporidiosis Birth Cohort (CBC). Associations were estimated separately for each cohort under an additive model, adjusting for length-for-age Z-score at 12 months of age, the first two principal components to account for population substructure, and genotyping batch. The strongest meta-analytic association was with rs58296998 (P = 3.73 × 10-8), an intronic SNP and expression quantitative trait locus (eQTL) of protein kinase C alpha (PRKCA). Each additional risk allele conferred 2.4 times the odds of Cryptosporidium-associated diarrhea in the first year of life. This genetic association suggests a role for protein kinase C alpha in pediatric cryptosporidiosis and warrants further investigation.IMPORTANCE Globally, diarrhea remains one of the major causes of pediatric morbidity and mortality. The initial symptoms of diarrhea can often lead to long-term consequences for the health of young children, such as malnutrition and neurocognitive developmental deficits. Despite many children having similar exposures to infectious causes of diarrhea, not all develop symptomatic disease, indicating a possible role for human genetic variation. Here, we conducted a genetic study of susceptibility to symptomatic disease associated with Cryptosporidium infection (a leading cause of diarrhea) in three independent cohorts of infants from Dhaka, Bangladesh. We identified a genetic variant within protein kinase C alpha (PRKCA) associated with higher risk of cryptosporidiosis in the first year of life. These results indicate a role for human genetics in susceptibility to cryptosporidiosis and warrant further research to elucidate the mechanism
- …
