3,311 research outputs found
Staggered local density-of-states around the vortex in underdoped cuprates
We have studied a single vortex with the staggered flux (SF) core based on
the SU(2) slave-boson theory of high superconductors. We find that
whereas the center in the vortex core is a SF state, as one moves away from the
core center, a correlated staggered modulation of the hopping amplitude
and pairing amplitude becomes predominant. We predict that in this
region, the local density-of-states (LDOS) exhibits staggered modulation when
measured on the bonds, which may be directly detected by STM experiments.Comment: 4 pages, 3 figure
Baryogenesis from Primordial Blackholes after Electroweak Phase Transition
Incorporating a realistic model for accretion of ultra-relativistic particles
by primordial blackholes (PBHs), we study the evolution of an Einstein-de
Sitter universe consisting of PBHs embedded in a thermal bath from the epoch
sec to sec. In this paper we use Barrow
et al's ansatz to model blackhole evaporation in which the modified Hawking
temperature goes to zero in the limit of the blackhole attaining a relic state
with mass . Both single mass PBH case as well as the case in which
blackhole masses are distributed in the range gm
have been considered in our analysis. Blackholes with mass larger than gm appear to survive beyond the electroweak phase transition and,
therefore, successfully manage to create baryon excess via
emissions, averting the baryon number wash-out due to sphalerons. In this
scenario, we find that the contribution to the baryon-to-entropy ratio by PBHs
of initial mass is given by , where
and are the CP-violating parameter and the initial mass
fraction of the PBHs, respectively. For larger than ,
the observed matter-antimatter asymmetry in the universe can be attributed to
the evaporation of PBHs.Comment: Latex2e file with seven figures included as postscript file
Optical Control of Mammalian Endogenous Transcription and Epigenetic States
The dynamic nature of gene expression enables cellular programming, homeostasis, and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high precision spatiotemporal control of many cellular functions1-11. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here, we describe the development of Light-Inducible Transcriptional Effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain12-14 with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical co-factors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility3,4,6,7,15. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of awake mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states
Optical control of mammalian endogenous transcription and epigenetic states
A theoretical underpinning of the standard model of fundamental particles and interactions is CPT invariance, which requires that the laws of physics be invariant under the combined discrete operations of charge conjugation, parity and time reversal. Antimatter, the existence of which was predicted by Dirac, can be used to test the CPT theorem—experimental investigations involving comparisons of particles with antiparticles are numerous. Cold atoms and anti-atoms, such as hydrogen and antihydrogen, could form the basis of a new precise test, as CPT invariance implies that they must have the same spectrum. Observations of antihydrogen in small quantities and at high energies have been reported at the European Organization for Nuclear Research (CERN) and at Fermilab, but these experiments were not suited to precision comparison measurements. Here we demonstrate the production of antihydrogen atoms at very low energy by mixing trapped antiprotons and positrons in a cryogenic environment. The neutral anti-atoms have been detected directly when they escape the trap and annihilate, producing a characteristic signature in an imaging particle detector
Structure and Engineering of Francisella novicida Cas9
Summary The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5′-NGG-3′ PAM, and used the structural information to create a variant that can recognize the more relaxed 5′-YG-3′ PAM. Furthermore, we demonstrated that the FnCas9-ribonucleoprotein complex can be microinjected into mouse zygotes to edit endogenous sites with the 5′-YG-3′ PAM, thus expanding the target space of the CRISPR-Cas9 toolbox
Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup
Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s) = 1.96 TeV
We present a measurement of the top quark pair production cross section in
ppbar collisions at sqrt(s)=1.96 TeV using 318 pb^{-1} of data collected with
the Collider Detector at Fermilab. We select ttbar decays into the final states
e nu + jets and mu nu + jets, in which at least one b quark from the t-quark
decays is identified using a secondary vertex-finding algorithm. Assuming a top
quark mass of 178 GeV/c^2, we measure a cross section of 8.7 +-0.9 (stat)
+1.1-0.9 (syst) pb. We also report the first observation of ttbar with
significance greater than 5 sigma in the subsample in which both b quarks are
identified, corresponding to a cross section of 10.1 +1.6-1.4(stat)+2.0-1.3
(syst) pb.Comment: Accepted for publication in Physics Review Letters, 7 page
An SU(2) Formulation of the t-J model: Application to Underdoped Cuprates
We develop a slave-boson theory for the t-J model at finite doping which
respect a SU(2) symmetry -- a symmetry previously known to be important at half
filling. The mean field phase diagram is found to be consistent with the phases
observed in the cuprate superconductors, which contains d-wave superconductor,
spin gap, strange metal, and Fermi liquid phases. The spin gap phase is best
understood as the staggered flux phase, which is nevertheless translationally
invariant for physical quantities. The physical electron spectral function
shows small Fermi segments at low doping which continuously evolve into the
large Fermi surface at high doping concentrations. The close relation between
the SU(2) and the U(1) slave-boson theory is discussed. The low energy
effective theory for the low lying fluctuations is derived, and new lying modes
(which were over looked in the U(1) theory) are identified.Comment: 28 pages, 8 figures, RevTe
Staggered flux state of electron in two-dimensional t-J model
The competition between the staggered flux state, or the d-density wave
state, and the d-wave pairing state is analyzed in two-dimensional t-J model
based on the U(1) slave boson mean-field theory. Not only staggered flux of
spinon but also staggered flux of holon are considered. In this formalism, the
hopping order parameter of electron is described by the product of
hopping order parameters of spinon and holon. The staggered flux amplitude of
electron is the difference of staggered flux amplitude of spinon and that of
holon. In -flux phase of spinon, staggered fluxes of spinon and holon
cancel completely and staggered flux order of electron does not exist. However,
in staggered flux phase of spinon whose staggered flux amplitude is not ,
fluxes does not cancel completely and staggered flux amplitude of electron
remains. Thus, the phase transition between these two phases, -flux phase
and staggered flux phase of spinon, becomes a second order transition in
electron picture. The order parameter which characterizes this
transition is staggered flux order parameter of electron. A mean-field phase
diagram is shown. It is proved analytically that there is no coexisistence of
staggered flux and d-wave pairing. The temperature dependences of Fermi surface
and excitation gap at are shown. These behaviors are consistent with
angle-resolved photoemission spectroscopy (ARPES) experiments.Comment: 10 pages, 8 figure
- …
