228 research outputs found
Evolution of the Thrombolytic Treatment Window for Acute Ischemic Stroke
Ischemic stroke is a major cause of morbidity and mortality for which the only approved treatment in the acute setting is intravenous thrombolysis. The efficacy and safety of recombinant tissue plasminogen activator (rt-PA) have been firmly established within 3 h of symptom onset; however, few patients are eligible for treatment in this time window. Expanding the time for treatment has been challenging, but new evidence has demonstrated a modest statistical improvement in selected patients when rt-PA is administered within 4.5 h. This important finding hopefully will enable more patients to receive treatment and simultaneously provides an opportunity to reaffirm that the benefits of rt-PA diminish with time
Correlating Stroke Risk with Non-Invasive Tracing of Brain Blood Dynamic via a Portable Speckle Contrast Optical Spectroscopy Laser Device
Stroke poses a significant global health threat, with millions affected annually, leading to substantial morbidity and mortality. Current stroke risk assessment for the general population relies on markers such as demographics, blood tests, and comorbidities. A minimally invasive, clinically scalable, and cost-effective way to directly measure cerebral blood flow presents an opportunity. This opportunity has potential to positively impact effective stroke risk assessment prevention and intervention. Physiological changes in the cerebral vascular system, particularly in response to carbon dioxide level changes and oxygen deprivation, such as during breath-holding, can offer insights into stroke risk assessment. However, existing methods for measuring cerebral perfusion reserve, such as blood flow and blood volume changes, are limited by either invasiveness or impracticality. Here, we propose a transcranial approach using speckle contrast optical spectroscopy (SCOS) to non-invasively monitor regional changes in brain blood flow and volume during breath-holding. Our study, conducted on 50 individuals classified into two groups (low-risk and higher-risk for stroke), shows significant differences in blood dynamic changes during breath-holding between the two groups, providing physiological insights for stroke risk assessment using a non-invasive quantification paradigm. Given its cost-effectiveness, scalability, portability, and simplicity, this laser-centric tool has significant potential in enhancing the pre-screening of stroke and mitigating strokes in the general population through early diagnosis and intervention.12 pages, 4 figure
Lower respiratory tract infections in children requiring mechanical ventilation: a multicentre prospective surveillance study incorporating airway metagenomics
BackgroundLower respiratory tract infections (LRTI) are a leading cause of critical illness and mortality in mechanically ventilated children; however, the pathogenic microbes frequently remain unknown. We combined traditional diagnostics with metagenomic next generation sequencing (mNGS) to evaluate the cause of LRTI in critically ill children.MethodsWe conducted a prospective, multicentre cohort study of critically ill children aged 31 days to 17 years with respiratory failure requiring mechanical ventilation (>72 h) in the USA. By combining bacterial culture and upper respiratory viral PCR testing with mNGS of tracheal aspirate collected from all patients within 24 h of intubation, we determined the prevalence, age distribution, and seasonal variation of viral and bacterial respiratory pathogens detected by either method in children with or without LRTI.FindingsBetween Feb 26, 2015, and Dec 31, 2017, of the 514 enrolled patients, 397 were eligible and included in the study (276 children with LRTI and 121 with no evidence of LRTI). A presumptive microbiological cause was identified in 255 (92%) children with LRTI, with respiratory syncytial virus (127 [46%]), Haemophilus influenzae (70 [25%]), and Moraxella catarrhalis (65 [24%]) being most prevalent. mNGS identified uncommon pathogens including Ureaplasma parvum and Bocavirus. Co-detection of viral and bacterial pathogens occurred in 144 (52%) patients. Incidental carriage of potentially pathogenic microbes occurred in 82 (68%) children without LRTI, with rhinovirus (30 [25%]) being most prevalent. Respiratory syncytial virus (p<0·0001), H influenzae (p=0·0006), and M catarrhalis (p=0·0002) were most common in children younger than 5 years. Viral and bacterial LRTI occurred predominantly during winter months.InterpretationThese findings demonstrate that respiratory syncytial virus, H influenzae, and M catarrhalis contribute disproportionately to severe paediatric LRTI, co-infections are common, and incidental carriage of potentially pathogenic microbes occurs frequently. Further, we provide a framework for future epidemiological and emerging pathogen surveillance studies, highlighting the potential for metagenomics to enhance clinical diagnosis.FundingUS National Institutes of Health and CZ Biohub
Two-Photon Imaging of Cortical Surface Microvessels Reveals a Robust Redistribution in Blood Flow after Vascular Occlusion
A highly interconnected network of arterioles overlies mammalian cortex to route blood to the cortical mantle. Here we test if this angioarchitecture can ensure that the supply of blood is redistributed after vascular occlusion. We use rodent parietal cortex as a model system and image the flow of red blood cells in individual microvessels. Changes in flow are quantified in response to photothrombotic occlusions to individual pial arterioles as well as to physical occlusions of the middle cerebral artery (MCA), the primary source of blood to this network. We observe that perfusion is rapidly reestablished at the first branch downstream from a photothrombotic occlusion through a reversal in flow in one vessel. More distal downstream arterioles also show reversals in flow. Further, occlusion of the MCA leads to reversals in flow through approximately half of the downstream but distant arterioles. Thus the cortical arteriolar network supports collateral flow that may mitigate the effects of vessel obstruction, as may occur secondary to neurovascular pathology
How to establish the outer limits of reperfusion therapy
Reperfusion therapy with intravenous alteplase and endovascular therapy are effective treatments for selected patients with acute ischemic stroke. Guidelines for treatment are based upon randomized trials demonstrating substantial treatment effects for highly selected patients based on time from stroke onset and imaging features. However, patients beyond the current established guidelines might benefit with lesser but still clinically significant treatment effects. The STAIR (Stroke Treatment Academic Industry Roundtable) XI meeting convened a workgroup to consider the “outer limits” of reperfusion therapy by defining the current boundaries, and exploring optimal parameters and methodology for determining the outer limits. In addition to statistical significance, the minimum clinically important difference should be considered in exploring the limits of reperfusion therapy. Societal factors and quality of life considerations should be incorporated into assessment of treatment efficacy. The threshold for perception of benefit in the medical community may differ from that necessary for the Food and Drug Administration approval. Data from alternative sources such as platform trials, registries and large pragmatic trials should supplement randomized controlled trials to improve generalizability to routine clinical practice. Further interactions between industry and academic centers should be encouraged
Recommended from our members
Acute stroke imaging research roadmap IV : imaging selection and outcomes in acute stroke clinical trials and practice
Background and Purpose:
The Stroke Treatment Academic Industry Roundtable (STAIR) sponsored an imaging session and workshop during the Stroke Treatment Academic Industry Roundtable XI via webinar on October 1 to 2, 2020, to develop consensus recommendations, particularly regarding optimal imaging at primary stroke centers.
Methods:
This forum brought together stroke neurologists, neuroradiologists, neuroimaging research scientists, members of the National Institute of Neurological Disorders and Stroke, industry representatives, and members of the US Food and Drug Administration to discuss imaging priorities in the light of developments in reperfusion therapies, particularly in an extended time window, and reinvigorated interest in brain cytoprotection trials.
Results:
The imaging session summarized and compared the imaging components of recent acute stroke trials and debated the optimal imaging strategy at primary stroke centers. The imaging workshop developed consensus recommendations for optimizing the acquisition, analysis, and interpretation of computed tomography and magnetic resonance acute stroke imaging, and also recommendations on imaging strategies for primary stroke centers.
Conclusions:
Recent positive acute stroke clinical trials have extended the treatment window for reperfusion therapies using imaging selection. Achieving rapid and high-quality stroke imaging is therefore critical at both primary and comprehensive stroke centers. Recommendations for enhancing stroke imaging research are provided
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
- …
