517 research outputs found
New Bathonian (Middle Jurassic) sauropod remains from the Valtos Formation, Isle of Skye, Scotland
The discovery of a sauropod tooth and a single sauropod footprint from the Valtos Formation supplements our knowledge of these dinosaurs from the Middle Jurassic of the Isle of Skye. Although the family cannot be determined from this single tooth, it is thought that it represents a primitive eusauropod and may belong to a similar sauropod to that previously described from limited isolated osteological evidence (caudal vertebra, damaged humerus and a rib). The characteristics that suggest this affinity include evidence of denticles on one edge of the tooth, wrinkling and granulation of the enamel, wear suggesting crown-to-crown occlusion, and the spatulate tooth shape. The single sauropod footprint is the oldest record of a sauropod footprint from the Middle Jurassic of Skye
Recommended from our members
Laser Tracker III: Sandia National Laboratories` third generation laser tracking system
At Sandia Labs` Coyote Canyon Test Complex, it became necessary to develop a precision single station solution to provide time space position information (tspi) when tracking airborne test vehicles. Sandia`s first laser tracker came on line in 1968, replacing the fixed camera technique for producing trajectory data. This system shortened data reduction time from weeks to minutes. Laser Tracker 11 began operations in 1982, replacing the original tracker. It incorporated improved optics and electronics, with the addition of a microprocessor-based real-time control (rtc) system within the main servo loop. The rtc added trajectory prediction with the loss of adequate tracking signal and automatic control of laser beam divergence according to target range. Laser Tracker III, an even more advanced version of the systems, came on line in 1990. Unlike LTII, which is mounted in a trailer and must by moved by a tractor, LTIII is mounted on its own four-wheel drive carrier. This allows the system to be used at even the most remote locations. It also incorporated improved optics and electronics with the addition of absolute ranging, acquisition on the fly, and automatic transition from manual Joystick tracking to laser tracking for aircraft tests. LTIII provides a unique state of the art tracking capability for missile, rocket sled, aircraft, submunition, and parachute testing. Used in conjunction with LTII, the systems together can provide either simultaneous or extended range tracking. Mobility, accuracy, reliability, and cost effectiveness enable these systems to support a variety of testing at Department of Energy and Department of Defense ranges
Dynamic Assessment of Baroreflex Control of Heart Rate During Induction of Propofol Anesthesia Using a Point Process Method
In this article, we present a point process method to assess dynamic baroreflex sensitivity (BRS) by estimating the baroreflex gain as focal component of a simplified closed-loop model of the cardiovascular system. Specifically, an inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by linear and bilinear bivariate regressions on both the previous R−R intervals (RR) and blood pressure (BP) beat-to-beat measures. The instantaneous baroreflex gain is estimated as the feedback branch of the loop with a point-process filter, while the RRBP feedforward transfer function representing heart contractility and vasculature effects is simultaneously estimated by a recursive least-squares filter. These two closed-loop gains provide a direct assessment of baroreflex control of heart rate (HR). In addition, the dynamic coherence, cross bispectrum, and their power ratio can also be estimated. All statistical indices provide a valuable quantitative assessment of the interaction between heartbeat dynamics and hemodynamics. To illustrate the application, we have applied the proposed point process model to experimental recordings from 11 healthy subjects in order to monitor cardiovascular regulation under propofol anesthesia. We present quantitative results during transient periods, as well as statistical analyses on steady-state epochs before and after propofol administration. Our findings validate the ability of the algorithm to provide a reliable and fast-tracking assessment of BRS, and show a clear overall reduction in baroreflex gain from the baseline period to the start of propofol anesthesia, confirming that instantaneous evaluation of arterial baroreflex control of HR may yield important implications in clinical practice, particularly during anesthesia and in postoperative care.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant K25-NS05758)National Institutes of Health (U.S.) (Grant DP2- OD006454)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant R01-DA015644)Massachusetts General Hospital (Clinical Research Center, UL1 Grant RR025758
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
Molecular Characterization of Recent and Archived Erysipelothrix rhusiopathiae Isolates
Cases of erysipelas have increased considerably in 2001–2002. Diagnosis of erysipelas is typically confirmed by culture and in a limited number of cases the isolates are serotyped. Reagents for serotyping are limited and are available only at National Veterinary Service Laboratory (NVSL). In this study, we utilize pulsed-field gel electrophoresis (PFGE) to differentiate genotypes and compare archived and recent isolates. Seventy-three erysipelas field isolates (58 recent, 15 historical) and four live vaccine strains were genetically characterized. Fortysix isolates were found to belong to genotype 1A(I), three were genotype 1A(III), each one was genotype 1A(IV), 1A(V), 1A(VI), and two isolates were designated as 1A(VII). Nine different genotypes were identified among the serotype 1b isolates [1B(I-IX)]. Within serotype 2, three genotypes were identified: 2A, 2B, and 2C. The four vaccine strains tested in this study belong to the genotype group 1A(II), closely related to genotype 1A. The vaccine strains and the most common field isolates genotype 1A(I) shared 78.6% identity based on PFGE pattern
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Assessing Student Participation at School: Developing a Multidimensional Scale
In the past few years there has been a growing interest in student participation at school, and in whether participation is connected with student wellbeing or with academic success. One problem when studying student participation is that it seems to mean different things to different people. For some people it is just about students attending school and going to lessons. For others it is about students making decisions about things that matter to them, or being part of “student voice” activities at school. Another problem is that we do not have good ways to measure how well schools are doing at student participation, with tools that take account of the different ways that students can participate. This article reports how a new tool has been created to measure student participation. The new tool is called the Student Participation Scale. It was created in New South Wales (NSW), Australia. The researchers read books and articles on student participation. They also talked to school staff and students to find out what student participation meant to them, and they asked them about what questions should go into the tool. Once they created the Student Participation Scale, the researchers tested it on 1,435 secondary school students. The Scale asks 38 questions to measure six types or “elements” of student participation:
Students working together with peers and school staff,
Students having a voice about schooling,
Students having a say with influential people at school,
Students having influence on decisions made at school,
Students having a voice about school activities outside of the classroom, and
Students having choice.
These elements of student participation were the same for boys and girls, for different grade or year groups, for students who spoke English as a second language, for students from an Indigenous background, and for students with a disability. The Scale was also consistent and valid. That is, it measured what the researchers said it would measure. The Student Participation Scale is easy and free for schools to use. It can be used to measure which elements of participation are happening most, and which ones schools might try to improve. There is also a guidebook that has instructions and tips for using the Scale in schools
Meta-analysis identifies seven susceptibility loci involved in the atopic March
Eczema often precedes the development of asthma in a disease course called the a 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10 a'8) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10 a'9). Additional susceptibility loci identified
- …
