87 research outputs found
Detecting transient gravitational waves in non-Gaussian noise with partially redundant analysis methods
There is a broad class of astrophysical sources that produce detectable,
transient, gravitational waves. Some searches for transient gravitational waves
are tailored to known features of these sources. Other searches make few
assumptions about the sources. Typically events are observable with multiple
search techniques. This work describes how to combine the results of searches
that are not independent, treating each search as a classifier for a given
event. This will be shown to improve the overall sensitivity to
gravitational-wave events while directly addressing the problem of consistent
interpretation of multiple trials.Comment: 11 pages, 5 figure
Cross-conjugated macrocyclic chelating agents and intermediates.
The known preparative route to macrocycles from aromatic diamines and di-iminoisoindoline has been extended to the use of starting materials containing bulky alkyl substituents. A number of metal-free macrocycles and metal derivatives have been isolated, together with some simpler condensation products. These materials are considerably more soluble than the compounds which did not contain bulky alkyl substituents and p. m. r. studies have readily been carried out. From these spectra, it is clearly demonstrated that nickel derivatives of the pyridine macrocycle do not contain extensive cyclically delocalized pi-electron systems as an X-ray crystallographic study had suggested, but that they are cross-conjugated. It is also shown in the case of some dicondensation products, that syn- and anti-geometrical isomers are possible and the relative concentration of each in solution at 34° has been calculated from the p. m. r. spectra. Difficulties which were encountered in macrocyclic syntheses are explained in part on the basis of solubilities and of electronic effects of the alkyl substituents. The preparation of some 2,4-disubstituted pyrimidine derivatives is outlined and their reactions with phthalonitrile and di-iminoisoindolines described. It was not found possible to obtain isolable macrocyclic products here but evidence is available for their presence in some reaction mixtures
Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background
We describe a general approach to detection of transient gravitational-wave
signals in the presence of non-Gaussian background noise. We prove that under
quite general conditions, the ratio of the likelihood of observed data to
contain a signal to the likelihood of it being a noise fluctuation provides
optimal ranking for the candidate events found in an experiment. The
likelihood-ratio ranking allows us to combine different kinds of data into a
single analysis. We apply the general framework to the problem of unifying the
results of independent experiments and the problem of accounting for
non-Gaussian artifacts in the searches for gravitational waves from compact
binary coalescence in LIGO data. We show analytically and confirm through
simulations that in both cases the likelihood ratio statistic results in an
improved analysis.Comment: 10 pages, 6 figure
Herbicide-resistant weeds : from research and knowledge to future needs
Synthetic herbicides have been used globally to control weeds in major field crops. This has imposed a strong selection for any trait that enables plant populations to survive and reproduce in the presence of the herbicide. Herbicide resistance in weeds must be minimized because it is a major limiting factor to food security in global agriculture. This represents a huge challenge that will require great research efforts to develop control strategies as alternatives to the dominant and almost exclusive practice of weed control by herbicides. Weed scientists, plant ecologists and evolutionary biologists should join forces and work towards an improved and more integrated understanding of resistance across all scales. This approach will likely facilitate the design of innovative solutions to the global herbicide resistance challenge
Quality measures in non-random sampling: MFI interest rate statistics
Traditional literature on sampling techniques focuses mainly on statistical samples and covers non-random (non-statistical) samples only marginally. Nevertheless, there has been a recent revival of interest in non-statistical samples, given their widespread use in certain fields like government surveys and marketing research, or for audit purposes. This paper attempts to set up common rules for non-statistical samples in which only data on the largest institutions within each stratum are collected. This is done by focusing on the statistics compiled by the European System of Central Banks (ESCB) on the interest rates of monetary financial institutions (MFIs) in countries of the European Union. The paper concludes by proposing a way of establishing common rules for non-statistical samples based on a synthetic measurement of a mean of absolute errors
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Search for gravitational wave bursts in LIGO's third science run
We report on a search for gravitational wave bursts in data from the three
LIGO interferometric detectors during their third science run. The search
targets subsecond bursts in the frequency range 100-1100 Hz for which no
waveform model is assumed, and has a sensitivity in terms of the
root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No
gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published
in Classical and Quantum Gravit
Quantum state preparation and macroscopic entanglement in gravitational-wave detectors
Long-baseline laser-interferometer gravitational-wave detectors are operating
at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within
a broad frequency band. Such a low classical noise budget has already allowed
the creation of a controlled 2.7 kg macroscopic oscillator with an effective
eigenfrequency of 150 Hz and an occupation number of 200. This result, along
with the prospect for further improvements, heralds the new possibility of
experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical
behavior of objects in the realm of everyday experience - using
gravitational-wave detectors. In this paper, we provide the mathematical
foundation for the first step of a MQM experiment: the preparation of a
macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum
state, which is possible if the interferometer's classical noise beats the SQL
in a broad frequency band. Our formalism, based on Wiener filtering, allows a
straightforward conversion from the classical noise budget of a laser
interferometer, in terms of noise spectra, into the strategy for quantum state
preparation, and the quality of the prepared state. Using this formalism, we
consider how Gaussian entanglement can be built among two macroscopic test
masses, and the performance of the planned Advanced LIGO interferometers in
quantum-state preparation
Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project
The Numerical INJection Analysis (NINJA) project is a collaborative effort
between members of the numerical relativity and gravitational-wave data
analysis communities. The purpose of NINJA is to study the sensitivity of
existing gravitational-wave search algorithms using numerically generated
waveforms and to foster closer collaboration between the numerical relativity
and data analysis communities. We describe the results of the first NINJA
analysis which focused on gravitational waveforms from binary black hole
coalescence. Ten numerical relativity groups contributed numerical data which
were used to generate a set of gravitational-wave signals. These signals were
injected into a simulated data set, designed to mimic the response of the
Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this
data using search and parameter-estimation pipelines. Matched filter
algorithms, un-modelled-burst searches and Bayesian parameter-estimation and
model-selection algorithms were applied to the data. We report the efficiency
of these search methods in detecting the numerical waveforms and measuring
their parameters. We describe preliminary comparisons between the different
search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ
- …
