148 research outputs found
The effect of osteocyte-derived RANKL on bone graft remodeling: An in vivo experimental study.
OBJECTIVES
Autologous bone is considered the gold standard for grafting, yet it suffers from a tendency to undergo resorption over time. While the exact mechanisms of this resorption remain elusive, osteocytes have been shown to play an important role in stimulating osteoclastic activity through their expression of receptor activator of NF-κB (RANK) ligand (RANKL). The aim of this study was to assess the function of osteocyte-derived RANKL in bone graft remodeling.
MATERIALS AND METHODS
In Tnfsf11fl/fl ;Dmp1-Cre mice without osteocyte-specific RANKL as well as in Dmp1-Cre control mice, 2.6 mm calvarial bone disks were harvested and transplanted into mice with matching genetic backgrounds either subcutaneously or subperiosteally, creating 4 groups in total. Histology and micro-computed tomography of the grafts and the donor regions were performed 28 days after grafting.
RESULTS
Histology revealed marked resorption of subcutaneous control Dmp1-Cre grafts and new bone formation around subperiosteal Dmp1-Cre grafts. In contrast, Tnfsf11fl/fl ;Dmp1-Cre grafts showed effectively neither signs of bone resorption nor formation. Quantitative micro-computed tomography revealed a significant difference in residual graft area between subcutaneous and subperiosteal Dmp1-Cre grafts (p < .01). This difference was not observed between subcutaneous and subperiosteal Tnfsf11fl/fl ;Dmp1-Cre grafts (p = .17). Residual graft volume (p = .08) and thickness (p = .13) did not differ significantly among the groups. Donor area regeneration was comparable between Tnfsf11fl/fl ;Dmp1-Cre and Dmp1-Cre mice and restricted to the defect margins.
CONCLUSIONS
The results suggest an active function of osteocyte-derived RANKL in bone graft remodeling
Impact of a Static Magnetic Field on Early Osseointegration: A Pilot Study in Canines.
A static magnetic field generated by neodymium-iron-boron (NdFeB) magnets placed in the inner cavity of dental implants can enhance bone regeneration in rabbits. It is, however, unknown whether static magnetic fields support osseointegration in a canine model. We therefore determined the potential osteogenic effect of implants carrying NdFeB magnets inserted in the tibia of six adult canines in the early stages of osseointegration. Here, we report that after 15 days of healing, magnetic and regular implants showed a high variation with a median new bone-to-implant contact (nBIC) in the cortical (41.3% and 7.3%) and the medullary (28.6% and 44.8%) region, respectively. Consistently, the median new bone volume/tissue volume (nBV/TV) in the cortical (14.9% and 5.4%) and the medullary (22.2% and 22.4%) region were not significantly different. One week of healing only resulted in negligible bone formation. These findings suggest that considering the large variation and the pilot nature of this study, magnetic implants failed to support peri-implant bone formation in a canine model
miRNA-21 deficiency impairs alveolar socket healing in mice.
OBJECTIVES
MicroRNAs (miRNAs) are small noncoding RNAs demonstrated as critical post-transcriptional modulators in dental tissues and bone regeneration, particularly miR-21-5p. However, the role of miR-21-5p in the healing of alveolar sockets following tooth extraction remains unknown. In this study we evaluated the influence of miR-21-5p in the healing of alveolar socket after tooth extraction.
METHODS
Eight miR-21-5p knockout mice and eight littermate controls underwent tooth extraction of the upper right incisor. After a healing period of 14 days microCT and histological analyses were performed.
RESULTS
MicroCT analysis showed that the percentage of bone in the extraction socket was significantly higher in the control group than in the miR-21 knockout mice; either in the coronal (39.0%, CI 31.8 to 48.0 versus 23.0%, CI 17.8 to 35.2, P = 0.03) or in the middle part of the alveolar socket (56.0%, CI 50.9 to 62.5 versus 43.5% CI 28.6 to 54.6, P = 0.03). These differences were not noted in the apical part of the extraction socket. Histological analysis supported the microCT findings. Newly bone volume per tissue volume (BV/TV) was significantly higher in the control group when compared to miR-21 knockout mice, 27.4% (CI 20.6 to 32.9) versus 19.0% (CI 14.7 to 21.5, P < 0.05), respectively. Surprisingly, no evident signs of buccal bone resorption were observed in both groups.
CONCLUSION
Despite the limitation of one observation period, these findings suggest that miR-21-5p delays the early healing of alveolar socket following tooth extraction. Whether miR-21-5p is essential for healing of alveolar sockets remains to be elucidated
Stromal vascular fraction cells as biologic coating of mesh for hernia repair
11 p.Background. The interest in non-manipulated cells originating from adipose tissue has raised tremendously in the field of tissue engineering and regenerative medicine. The resulting stromal vascular fraction (SVF) cells have been successfully used in numerous clinical applications. The aim of this experimental work is, first to combine a macroporous synthetic mesh with SVF isolated using a mechanical disruption process, and to assess the effect of those cells on the early healing phase of hernia. Methods. Human SVF cells combined with fibrin were used to coat commercial titanized polypropylene meshes. In vitro, viability and growth of the SVF cells were assessed using live/dead staining and scanning electron microscopy. The influence of SVF cells on abdominal wall hernia healing was conducted on immunodeficient rats, with a focus on short-term vascularization and fibrogenesis. Results. Macroporous meshes were easily coated with SVF using a fibrin gel as temporary carrier. The in vitro experiments showed that the whole process including the isolation of human SVF cells and their coating on PP meshes did not impact on the SVF cells? viability and on their capacity to attach and to proliferate. In vivo, the SVF cells were well tolerated by the animals, and coating mesh with SVF resulted in a decrease degree of vascularity compared to control group at day 21. Conclusions. The utilization of SVF-coated mesh influences the level of angiogenesis during the early onset of tissue healing. Further long-term animal experiments are needed to confirm that this effect correlates with a more robust mesh integration compared to non-SVF-coated mesh.European Hernia Society Research GrantTU
Bone regeneration in rat calvarial defects using dissociated or spheroid mesenchymal stromal cells in scaffold-hydrogel constructs
Background
Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSC). 3D printing offers the possibility to produce customized scaffolds for complex bone defects. The aim of this study was to compare the potential of human BMSC cultured as 2D monolayers or 3D spheroids encapsulated in constructs of 3D-printed poly-L-lactide-co-trimethylene carbonate scaffolds and modified human platelet lysate hydrogels (PLATMC-HPLG) for bone regeneration.
Methods
PLATMC-HPLG constructs with 2D or 3D BMSC were assessed for osteogenic differentiation based on gene expression and in vitro mineralization. Subsequently, PLATMC-HPLG constructs with 2D or 3D BMSC were implanted in rat calvarial defects for 12 weeks; cell-free constructs served as controls. Bone regeneration was assessed via in vivo computed tomography (CT), ex vivo micro-CT and histology.
Results
Osteogenic gene expression was significantly enhanced in 3D versus 2D BMSC prior to, but not after, encapsulation in PLATMC-HPLG constructs. A trend for greater in vitro mineralization was observed in constructs with 3D versus 2D BMSC (p > 0.05). In vivo CT revealed comparable bone formation after 4, 8 and 12 weeks in all groups. After 12 weeks, micro-CT revealed substantial regeneration in 2D BMSC (62.47 ± 19.46%), 3D BMSC (51.01 ± 24.43%) and cell-free PLATMC-HPLG constructs (43.20 ± 30.09%) (p > 0.05). A similar trend was observed in the histological analysis.
Conclusion
Despite a trend for superior in vitro mineralization, constructs with 3D and 2D BMSC performed similarly in vivo. Regardless of monolayer or spheroid cell culture, PLATMC-HPLG constructs represent promising scaffolds for bone tissue engineering applications.publishedVersio
Functionalizing Collagen Membranes with MSC-Conditioned Media Promotes Guided Bone Regeneration in Rat Calvarial Defects.
Functionalizing biomaterials with conditioned media (CM) from mesenchymal stromal cells (MSC) is a promising strategy for enhancing the outcomes of guided bone regeneration (GBR). This study aimed to evaluate the bone regenerative potential of collagen membranes (MEM) functionalized with CM from human bone marrow MSC (MEM-CM) in critical size rat calvarial defects. MEM-CM prepared via soaking (CM-SOAK) or soaking followed by lyophilization (CM-LYO) were applied to critical size rat calvarial defects. Control treatments included native MEM, MEM with rat MSC (CEL) and no treatment. New bone formation was analyzed via micro-CT (2 and 4 weeks) and histology (4 weeks). Greater radiographic new bone formation occurred at 2 weeks in the CM-LYO group vs. all other groups. After 4 weeks, only the CM-LYO group was superior to the untreated control group, whereas the CM-SOAK, CEL and native MEM groups were similar. Histologically, the regenerated tissues showed a combination of regular new bone and hybrid new bone, which formed within the membrane compartment and was characterized by the incorporation of mineralized MEM fibers. Areas of new bone formation and MEM mineralization were greatest in the CM-LYO group. Proteomic analysis of lyophilized CM revealed the enrichment of several proteins and biological processes related to bone formation. In summary, lyophilized MEM-CM enhanced new bone formation in rat calvarial defects, thus representing a novel 'off-the-shelf' strategy for GBR
Acellular Human Placenta Small-Diameter Vessels as a Favorable Source of Super-Microsurgical Vascular Replacements: A Proof of Concept
Circulating miRNAs are associated with successful bone regeneration
IntroductionBone healing is a well-orchestrated process involving various bone cells and signaling pathways, where disruptions can result in delayed or incomplete healing. MicroRNAs (miRNAs) are small non-coding RNAs capable of influencing various cellular processes, including bone remodeling. Due to their biological relevance and stable presence in biofluids, miRNAs may serve as candidates for diagnosis and prognosis of delayed bone healing. The aim of the study was to investigate changes in miRNAs circulating in the blood during the healing of rat calvaria defects as biomarkers of successful bone regeneration.MethodsStandardized calvaria defects were created in 36 Wistar rats with a trephine drill and treated with collagen hydroxyapatite (CHA) scaffolds. The treatment groups included CHA scaffolds only, CHA scaffolds containing a plasmid coding for bone morphogenetic protein 2 (BMP2) and miR-590-5p, CHA scaffolds containing mesenchymal stromal cell-derived extracellular vesicles, and empty defects as a control group. After 1, 4 and 8 weeks of healing, the animals were evaluated by microcomputed tomography (microCT), as well as subjected to histological analyses. Blood was sampled from the tail vein prior to surgeries and after 1, 4, and 8 weeks of healing. miRNAs circulating in the plasma were determined using next-generation sequencing.ResultsVariability of bone regeneration within the four groups was unexpectedly high and did not result in significant differences between the groups, as indicated by the microCT and histological analyses of the newly formed bone tissue. However, irrespective of the treatment group and regenerative activity, we identified miRNAs with distinct expression patterns of up- and downregulation at different time points. Furthermore, rats with high and low regenerative activity were characterized by distinct circulating miRNA profiles. miR-133-3p was identified as the top upregulated miRNA and miR-375-3p was identified as the top downregulated miRNA in animals exhibiting strong regeneration over all time points evaluated.ConclusionOur study indicates that regardless of the treatment group, success or lack of bone regeneration is associated with a distinct expression pattern of circulating microRNAs. Further research is needed to determine whether their levels in the blood can be used as predictive factors of successful bone regeneration
- …
