856 research outputs found

    Quality of life in Type 1 (insulin-dependent) diabetic patients prior to and after pancreas and kidney transplantation in relation to organ function

    Get PDF
    Improvement of the quality of life in Type 1 (insulin-dependent) diabetic patients with severe late complications is one of the main goals of pancreas and/or kidney grafting. To assess the influences of these treatment modalities on the different aspects of the quality of life a cross-sectional study in 157 patients was conducted. They were categorized into patients pre-transplant without dialysis (n=29; Group A), pre-transplant under dialysis (n=44; Group B), post-transplant with pancreas and kidney functioning (n=31; Group C), post-transplant with functioning kidney, but insulin therapy (n=29; Group D), post-transplant under dialysis and insulin therapy again (n=15; Group E) and patients after single pancreas transplantation and rejection, with good renal function, but insulin therapy (n=9; Group F). All patients answered a mailed, self-administered questionnaire (217 questions) consisting of a broad spectrum of rehabilitation criteria. The results indicate a better quality of life in Groups C and D as compared to the other groups. In general the scores are highest in C, but without any significant difference to D. Impressive significant differences between C or D and the other groups were found especially in their satisfaction with physical capacity, leisure-time activities or the overall quality of life. The satisfaction with the latter is highest in C (mean±SEM: 4.0±0.2 on a 1 to 5-rating scale; significantly different from A: 3.1±0.1, B: 2.7±0.2 and E: 2.6±0.3; p<0.01), followed by D (3.8±0.2; significantly different from B and E; p<0.01). Group F shows a mean of 3.1±0.4, which is not significantly different from C. The percentages of patients in each group, who are not working: A: 38 %, B: 64 %, C: 74 %, D: 66 %, E: 87 % and F: 78 % indicate that there is no marked improvement in the vocational situation after successful grafting

    Red supergiants as cosmic abundance probes: The first direct metallicity determination of NGC 4038 in the antennae.

    Get PDF
    We present a direct determination of the stellar metallicity in the close pair galaxy NGC 4038 (D= 20 Mpc) based on the quantitative analysis of moderate resolution KMOS/VLT spectra of three super star clusters (SSCs). The method adopted in our analysis has been developed and optimised to measure accurate metallicities from atomic lines in the J-band of single red supergiant (RSG) or RSG-dominated star clusters. Hence, our metallicity measurements are not a_ected by the biases and poorly understood systematics inherent to strong line H II methods which are routinely applied to massive data sets of galaxies. We _nd [Z]= +0.07 _ 0.03 and compare our measurements to H II strong line calibrations. Our abundances and literature data suggest the presence of a at metallicity gradient, which can be explained as redistribution of metal-rich gas following the strong interaction

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Search for Second-Generation Scalar Leptoquarks in ppˉ\bm{p \bar{p}} Collisions at s\sqrt{s}=1.96 TeV

    Get PDF
    Results on a search for pair production of second generation scalar leptoquark in ppˉp \bar{p} collisions at s\sqrt{s}=1.96 TeV are reported. The data analyzed were collected by the CDF detector during the 2002-2003 Tevatron Run II and correspond to an integrated luminosity of 198 pb1^{-1}. Leptoquarks (LQ) are sought through their decay into (charged) leptons and quarks, with final state signatures represented by two muons and jets and one muon, large transverse missing energy and jets. We observe no evidence for LQLQ production and derive 95% C.L. upper limits on the LQLQ production cross sections as well as lower limits on their mass as a function of β\beta, where β\beta is the branching fraction for LQμqLQ \to \mu q.Comment: 9 pages (3 author list) 5 figure

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers

    Optical Control of Mammalian Endogenous Transcription and Epigenetic States

    Get PDF
    The dynamic nature of gene expression enables cellular programming, homeostasis, and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high precision spatiotemporal control of many cellular functions1-11. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here, we describe the development of Light-Inducible Transcriptional Effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain12-14 with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical co-factors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility3,4,6,7,15. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of awake mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states

    Reach and grasp by people with tetraplegia using a neurally controlled robotic arm

    Get PDF
    Paralysis following spinal cord injury (SCI), brainstem stroke, amyotrophic lateral sclerosis (ALS) and other disorders can disconnect the brain from the body, eliminating the ability to carry out volitional movements. A neural interface system (NIS)1–5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with longstanding tetraplegia can use an NIS to move and click a computer cursor and to control physical devices6–8. Able-bodied monkeys have used an NIS to control a robotic arm9, but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here, we demonstrate the ability of two people with long-standing tetraplegia to use NIS-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor five years earlier, also used a robotic arm to drink coffee from a bottle. While robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after CNS injury, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals

    Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays

    Get PDF
    We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using 360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ) charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which the pions are from Rho0 decay. The latter case also encompasses exotic interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho hypotheses are compatible with our data. Since 3S1 is untenable on other grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872). Models for different J/Psi-Rho angular momenta L are considered. Flexibility in the models, especially the introduction of Rho-Omega interference, enable good descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let
    corecore