1,357 research outputs found
Cache-Oblivious VAT-Algorithms
The VAT-model (virtual address translation model) extends the EM-model
(external memory model) and takes the cost of address translation in virtual
memories into account. In this model, the cost of a single memory access may be
logarithmic in the largest address used. We show that the VAT-cost of
cache-oblivious algorithms is only by a constant factor larger than their
EM-cost; this requires a somewhat more stringent tall cache assumption as for
the EM-model
Succinct Posets
We describe an algorithm for compressing a partially ordered set, or
\emph{poset}, so that it occupies space matching the information theory lower
bound (to within lower order terms), in the worst case. Using this algorithm,
we design a succinct data structure for representing a poset that, given two
elements, can report whether one precedes the other in constant time. This is
equivalent to succinctly representing the transitive closure graph of the
poset, and we note that the same method can also be used to succinctly
represent the transitive reduction graph. For an element poset, the data
structure occupies bits, in the worst case, which is roughly
half the space occupied by an upper triangular matrix. Furthermore, a slight
extension to this data structure yields a succinct oracle for reachability in
arbitrary directed graphs. Thus, using roughly a quarter of the space required
to represent an arbitrary directed graph, reachability queries can be supported
in constant time.Comment: 12 pages lncs format + short appendi
A mutant of Neurospora crassa deficient in cytochrome c heme lyase activity cannot import cytochrome c into mitochondria
The nuclear cyt-2-1 mutant of Neurospora crassa is characterized by a gross deficiency of cytochrome c (Bertrand, H., and Collins, R. A. (1978) Mol. Gen. Genet. 166, 1-13). The mutant produces mRNA that can be translated into apocytochrome c in vitro. Apocytochrome c is also synthesized in vivo in cyt-2-1, but it is rapidly degraded and thus does not accumulate in the cytosol. Mitochondria from wild-type cells bind apocytochrome c made in vitro from either wild-type or cyt-2-1 mRNA and convert it to holocytochrome c. This conversion depends on the addition of heme by cytochrome c heme lyase and is coupled to translocation of cytochrome c into the intermembrane space. Mitochondria from the cyt-2-1 strain are deficient in the ability to bind apocytochrome c. They are also completely devoid of cytochrome c heme lyase activity. These defects explain the inability of the cyt-2-1 mutant to convert apocytochrome c to the holo form and to import it into mitochondria
Showboater: Insight into sustainable rural community display networks from a longitudinal study
This paper describes Showboater, a simple system architecture for rural community display networks. We outline the context of our 2-year longitudinal study and outline five design goals: a functional, sustainable, scalable, resilient networked display solution which affords roles for the distribution of governance. We describe the design and implementation of Showboater and how it aligns to the design goals, as well as describing two separate deployments. We reflect on evaluation feedback and provide insight into the implications of deploying Showboater as rural community display system, respective of the initial design goals, and present our recommendations for future improvements
Any-k: Anytime Top-k Tree Pattern Retrieval in Labeled Graphs
Many problems in areas as diverse as recommendation systems, social network
analysis, semantic search, and distributed root cause analysis can be modeled
as pattern search on labeled graphs (also called "heterogeneous information
networks" or HINs). Given a large graph and a query pattern with node and edge
label constraints, a fundamental challenge is to nd the top-k matches ac-
cording to a ranking function over edge and node weights. For users, it is di
cult to select value k . We therefore propose the novel notion of an any-k
ranking algorithm: for a given time budget, re- turn as many of the top-ranked
results as possible. Then, given additional time, produce the next lower-ranked
results quickly as well. It can be stopped anytime, but may have to continues
until all results are returned. This paper focuses on acyclic patterns over
arbitrary labeled graphs. We are interested in practical algorithms that
effectively exploit (1) properties of heterogeneous networks, in particular
selective constraints on labels, and (2) that the users often explore only a
fraction of the top-ranked results. Our solution, KARPET, carefully integrates
aggressive pruning that leverages the acyclic nature of the query, and
incremental guided search. It enables us to prove strong non-trivial time and
space guarantees, which is generally considered very hard for this type of
graph search problem. Through experimental studies we show that KARPET achieves
running times in the order of milliseconds for tree patterns on large networks
with millions of nodes and edges.Comment: To appear in WWW 201
Invisible design: exploring insights and ideas through ambiguous film scenarios
Invisible Design is a technique for generating insights and ideas with workshop participants in the early stages of concept development. It involves the creation of ambiguous films in which characters discuss a technology that is not directly shown. The technique builds on previous work in HCI on scenarios, persona, theatre, film and ambiguity. The Invisible Design approach is illustrated with three examples from unrelated projects; Biometric Daemon, Panini and Smart Money. The paper presents a qualitative analysis of data from a series of workshops where these Invisible Designs were discussed. The analysis outlines responses to the films in terms of; existing problems, concerns with imagined technologies and design speculation. It is argued that Invisible Design can help to create a space for critical and creative dialogue during participatory concept development
Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)
This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC). The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions
- …
