4,114 research outputs found

    Co-clustering separately exchangeable network data

    Full text link
    This article establishes the performance of stochastic blockmodels in addressing the co-clustering problem of partitioning a binary array into subsets, assuming only that the data are generated by a nonparametric process satisfying the condition of separate exchangeability. We provide oracle inequalities with rate of convergence OP(n1/4)\mathcal{O}_P(n^{-1/4}) corresponding to profile likelihood maximization and mean-square error minimization, and show that the blockmodel can be interpreted in this setting as an optimal piecewise-constant approximation to the generative nonparametric model. We also show for large sample sizes that the detection of co-clusters in such data indicates with high probability the existence of co-clusters of equal size and asymptotically equivalent connectivity in the underlying generative process.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1173 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Skellam shrinkage: Wavelet-based intensity estimation for inhomogeneous Poisson data

    Full text link
    The ubiquity of integrating detectors in imaging and other applications implies that a variety of real-world data are well modeled as Poisson random variables whose means are in turn proportional to an underlying vector-valued signal of interest. In this article, we first show how the so-called Skellam distribution arises from the fact that Haar wavelet and filterbank transform coefficients corresponding to measurements of this type are distributed as sums and differences of Poisson counts. We then provide two main theorems on Skellam shrinkage, one showing the near-optimality of shrinkage in the Bayesian setting and the other providing for unbiased risk estimation in a frequentist context. These results serve to yield new estimators in the Haar transform domain, including an unbiased risk estimate for shrinkage of Haar-Fisz variance-stabilized data, along with accompanying low-complexity algorithms for inference. We conclude with a simulation study demonstrating the efficacy of our Skellam shrinkage estimators both for the standard univariate wavelet test functions as well as a variety of test images taken from the image processing literature, confirming that they offer substantial performance improvements over existing alternatives.Comment: 27 pages, 8 figures, slight formatting changes; submitted for publicatio

    "Rewiring" Filterbanks for Local Fourier Analysis: Theory and Practice

    Full text link
    This article describes a series of new results outlining equivalences between certain "rewirings" of filterbank system block diagrams, and the corresponding actions of convolution, modulation, and downsampling operators. This gives rise to a general framework of reverse-order and convolution subband structures in filterbank transforms, which we show to be well suited to the analysis of filterbank coefficients arising from subsampled or multiplexed signals. These results thus provide a means to understand time-localized aliasing and modulation properties of such signals and their subband representations--notions that are notably absent from the global viewpoint afforded by Fourier analysis. The utility of filterbank rewirings is demonstrated by the closed-form analysis of signals subject to degradations such as missing data, spatially or temporally multiplexed data acquisition, or signal-dependent noise, such as are often encountered in practical signal processing applications

    Minimax rank estimation for subspace tracking

    Full text link
    Rank estimation is a classical model order selection problem that arises in a variety of important statistical signal and array processing systems, yet is addressed relatively infrequently in the extant literature. Here we present sample covariance asymptotics stemming from random matrix theory, and bring them to bear on the problem of optimal rank estimation in the context of the standard array observation model with additive white Gaussian noise. The most significant of these results demonstrates the existence of a phase transition threshold, below which eigenvalues and associated eigenvectors of the sample covariance fail to provide any information on population eigenvalues. We then develop a decision-theoretic rank estimation framework that leads to a simple ordered selection rule based on thresholding; in contrast to competing approaches, however, it admits asymptotic minimax optimality and is free of tuning parameters. We analyze the asymptotic performance of our rank selection procedure and conclude with a brief simulation study demonstrating its practical efficacy in the context of subspace tracking.Comment: 10 pages, 4 figures; final versio

    Superposition frames for adaptive time-frequency analysis and fast reconstruction

    Full text link
    In this article we introduce a broad family of adaptive, linear time-frequency representations termed superposition frames, and show that they admit desirable fast overlap-add reconstruction properties akin to standard short-time Fourier techniques. This approach stands in contrast to many adaptive time-frequency representations in the extant literature, which, while more flexible than standard fixed-resolution approaches, typically fail to provide efficient reconstruction and often lack the regular structure necessary for precise frame-theoretic analysis. Our main technical contributions come through the development of properties which ensure that this construction provides for a numerically stable, invertible signal representation. Our primary algorithmic contributions come via the introduction and discussion of specific signal adaptation criteria in deterministic and stochastic settings, based respectively on time-frequency concentration and nonstationarity detection. We conclude with a short speech enhancement example that serves to highlight potential applications of our approach.Comment: 16 pages, 6 figures; revised versio

    Modeling Network Populations via Graph Distances

    Get PDF
    This article introduces a new class of models for multiple networks. The core idea is to parametrize a distribution on labelled graphs in terms of a Fr\'{e}chet mean graph (which depends on a user-specified choice of metric or graph distance) and a parameter that controls the concentration of this distribution about its mean. Entropy is the natural parameter for such control, varying from a point mass concentrated on the Fr\'{e}chet mean itself to a uniform distribution over all graphs on a given vertex set. We provide a hierarchical Bayesian approach for exploiting this construction, along with straightforward strategies for sampling from the resultant posterior distribution. We conclude by demonstrating the efficacy of our approach via simulation studies and two multiple-network data analysis examples: one drawn from systems biology and the other from neuroscience.Comment: 33 pages, 8 figure
    corecore