13 research outputs found
TGFbeta Family Members Are Key Mediators in the Induction of Myofibroblast Phenotype of Human Adipose Tissue Progenitor Cells by Macrophages
International audienceOBJECTIVE: The present study was undertaken to characterize the remodeling phenotype of human adipose tissue (AT) macrophages (ATM) and to analyze their paracrine effects on AT progenitor cells. RESEARCH DESIGN AND METHODS: The phenotype of ATM, immunoselected from subcutaneous (Sc) AT originating from subjects with wide range of body mass index and from paired biopsies of Sc and omental (Om) AT from obese subjects, was studied by gene expression analysis in the native and activated states. The paracrine effects of ScATM on the phenotype of human ScAT progenitor cells (CD34(+)CD31(-)) were investigated. RESULTS: Two main ATM phenotypes were distinguished based on gene expression profiles. For ScAT-derived ATM, obesity and adipocyte-derived factors favored a pro-fibrotic/remodeling phenotype whereas the OmAT location and hypoxic culture conditions favored a pro-angiogenic phenotype. Treatment of native human ScAT progenitor cells with ScATM-conditioned media induced the appearance of myofibroblast-like cells as shown by expression of both α-SMA and the transcription factor SNAIL, an effect mimicked by TGFβ1 and activinA. Immunohistochemical analyses showed the presence of double positive α-SMA and CD34 cells in the stroma of human ScAT. Moreover, the mRNA levels of SNAIL and SLUG in ScAT progenitor cells were higher in obese compared with lean subjects. CONCLUSIONS: Human ATM exhibit distinct pro-angiogenic and matrix remodeling/fibrotic phenotypes according to the adiposity and the location of AT, that may be related to AT microenvironment including hypoxia and adipokines. Moreover, human ScAT progenitor cells have been identified as target cells for ScATM-derived TGFβ and as a potential source of fibrosis through their induction of myofibroblast-like cells
Automated Analysis of Electrochemical Curent Noise from Potentiostatic Conditioning of Passive Iron in Chloride-Containing Solutions
We have demonstrated the applicability of a recently developed automated methodology for processing of electrochemical current noise through the analysis of current records from potentiostatic conditioning of high purity iron thin films in pH 8.4 borate buffer solutions containing low levels of chloride, at potentials below those required for stable pitting. The analysis precisely identifies all anodic current transients and allows us to distinguish carefully between those within the background noise level and those outliers that are considered to indicate the onset of pitting corrosion. A strong potential dependence was observed for the measured characteristics of both the background current noise and the identified pitting events.</jats:p
Transmission Planning for 100% Clean Electricity: Enabling Clean, Affordable, and Reliable Electricity
Assessment of circulating free DNA concentration as a prognostic and predictive biomarker in a large cohort of non-small cell lung cancer treated by platinum-based chemotherapy.
Circulating free DNA concentration is an independent prognostic biomarker in lung cancer
Plasma circulating cell-free (cf)DNA is of interest in oncology because it has been shown to contain tumour DNA and may thus be used as liquid biopsy. In nonsmall cell lung cancer (NSCLC), cfDNA quantification has been proposed for the monitoring and follow-up of patients. However, available studies are limited and need to be confirmed by studies with larger sample sizes and including patients who receive more homogenous treatments. Our objective was to assess the predictive and prognostic value of plasma cfDNA concentration in a large series of patients with NSCLC and treated with a standard chemotherapy regimen.We included samples from lung cancer patients recruited into the Pharmacogenoscan study. The cfDNA of 218 patients was extracted and quantified by fluorometry before and after two or three cycles of platinum-based chemotherapy. The association between baseline and post-chemotherapy concentrations and treatment response, assessed by RECIST (response evaluation criteria in solid tumours) or patient survival was analysed.Patients with high cfDNA concentrations (highest tertile) at baseline had a significantly worse disease-free and overall survival than those with lower concentrations (lowest and middle tertiles) (median overall survival 10 months (95% CI 10.7–13.9)versus14.2 months (95% CI 12.6–15.8), respectively; p=0.001). In multivariate analysis, increased baseline concentration of cfDNA was an independent prognostic factor. However, we did not find any association between cfDNA concentration and response to treatment.cfDNA may be a biomarker for the assessment of prognosis in NSCLC. However, total concentration of cfDNA does not appear to predict chemotherapy response.</jats:p
Assessment of circulating free DNA concentration as a prognostic and predictive biomarker in a large cohort of non-small cell lung cancer treated by platinum-based chemotherapy.
Genome-scale mutational signatures of aflatoxin in cells, mice and human tumors
AbstractAflatoxin B1 (AFB1) is a mutagen and IARC Group 1 carcinogen that causes hepatocellular carcinoma (HCC). Here we present the first whole genome data on the mutational signatures of AFB1 exposure from a total of > 40,000 mutations in four experimental systems: two different human cell lines, and in liver tumors in wild-type mice and in mice that carried a hepatitis B surface antigen transgene – this to model the multiplicative effects of aflatoxin exposure and hepatitis B in causing HCC. AFB1 mutational signatures from all four experimental systems were remarkably similar. We integrated the experimental mutational signatures with data from newly-sequenced HCCs from Qidong County, China, a region of well-studied aflatoxin exposure. This indicated that COSMIC mutational signature 24, previously hypothesized to stem from aflatoxin exposure, indeed likely represents AFB1 exposure, possibly combined with other exposures. Among published somatic mutation data, we found evidence of AFB1 exposure in 0.7% of HCCs treated in North America, 1% of HCCs from Japan, but 16% of HCCs from Hong Kong. Thus, aflatoxin exposure apparently remains a substantial public health issue in some areas. This aspect of our study exemplifies the promise of future widespread resequencing of tumor genomes in providing new insights into the contribution of mutagenic exposures to cancer incidence.</jats:p
Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors
Aflatoxin B1 (AFB1) is a mutagen and IARC (International Agency for Research on Cancer) Group 1 carcinogen that causes hepatocellular carcinoma (HCC). Here, we present the first whole-genome data on the mutational signatures of AFB1 exposure from a total of >40,000 mutations in four experimental systems: two different human cell lines, in liver tumors in wild-type mice, and in mice that carried a hepatitis B surface antigen transgene—this to model the multiplicative effects of aflatoxin exposure and hepatitis B in causing HCC. AFB1 mutational signatures from all four experimental systems were remarkably similar. We integrated the experimental mutational signatures with data from newly sequenced HCCs from Qidong County, China, a region of well-studied aflatoxin exposure. This indicated that COSMIC mutational signature 24, previously hypothesized to stem from aflatoxin exposure, indeed likely represents AFB1 exposure, possibly combined with other exposures. Among published somatic mutation data, we found evidence of AFB1 exposure in 0.7% of HCCs treated in North America, 1% of HCCs from Japan, but 16% of HCCs from Hong Kong. Thus, aflatoxin exposure apparently remains a substantial public health issue in some areas. This aspect of our study exemplifies the promise of future widespread resequencing of tumor genomes in providing new insights into the contribution of mutagenic exposures to cancer incidence.</jats:p
