446 research outputs found

    Runx1 and Runx3 Are Involved in the Generation and Function of Highly Suppressive IL-17-Producing T Regulatory Cells

    Get PDF
    CD4+Foxp3+ T regulatory cells (Tregs) display phenotypic and functional plasticity that is regulated by cytokines and other immune cells. Previously, we determined that during co-culture with CD4+CD25− T cells and antigen presenting cells, Tregs produced IL-17. Here, we investigated the mechanisms underlying the differentiation of IL-17-producing Treg (Tr17) cells and their molecular and functional properties. We determined that during stimulation via TCR/CD3 and CD28, the combination of IL-1β and IL-2 was necessary and sufficient for the generation of Tr17 cells. Tr17 cells expressed Runx1 transcription factor, which was required for sustained expression of Foxp3 and RORγt and for production of IL-17. Surprisingly, Tr17 cells also expressed Runx3, which regulated transcription of perforin and granzyme B thereby mediating cytotoxic activity. Our studies indicate that Tr17 cells concomitantly express Foxp3, RORγt, Runx1 and Runx3 and are capable of producing IL-17 while mediating potent suppressive and cytotoxic function

    Rap1-interacting adapter molecule (RIAM) associates with the plasma membrane via a proximity detector

    Get PDF
    Adaptive immunity depends on lymphocyte adhesion that is mediated by the integrin lymphocyte functional antigen 1 (LFA-1). The small guanosine triphosphatase Rap1 regulates LFA-1 adhesiveness through one of its effectors, Rap1-interacting adapter molecule (RIAM). We show that RIAM was recruited to the lymphocyte plasma membrane (PM) through its Ras association (RA) and pleckstrin homology (PH) domains, both of which were required for lymphocyte adhesion. The N terminus of RIAM inhibited membrane translocation. In vitro, the RA domain bound both Rap1 and H-Ras with equal but relatively low affinity, whereas in vivo only Rap1 was required for PM association. The PH domain bound phosphoinositol 4,5-bisphosphate (PI(4,5)P2) and was responsible for the spatial distribution of RIAM only at the PM of activated T cells. We determined the crystal structure of the RA and PH domains and found that, despite an intervening linker of 50 aa, the two domains were integrated into a single structural unit, which was critical for proper localization to the PM. Thus, the RA-PH domains of RIAM function as a proximity detector for activated Rap1 and PI(4,5)P2

    Metabolism within the tumor microenvironment and its implication on cancer progression: an ongoing therapeutic target

    Get PDF
    Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment. Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the tumor microenvironment and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that tumor microenvironment is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including anti-tumor agents with those targeting stromal cell metabolism, anti-angiogenic drugs and/or immunotherapy are being developed as promising therapeutics.Mª Carmen Ocaña is recipient of a predoctoral FPU grant from the Spanish Ministry of Education, Culture and Sport. Supported by grants BIO2014-56092-R (MINECO and FEDER), P12-CTS-1507 (Andalusian Government and FEDER) and funds from group BIO-267 (Andalusian Government). The "CIBER de Enfermedades Raras" is an initiative from the ISCIII (Spain). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript

    Experimental investigation of solubility trapping in 3D printed micromodels

    Full text link
    Understanding interfacial mass transfer during dissolution of gas in a liquid is vital for optimising large-scale carbon capture and storage operations. While the dissolution of CO2 bubbles in reservoir brine is a crucial mechanism towards safe CO2 storage, it is a process that occurs at the pore-scale and is not yet fully understood. Direct numerical simulation (DNS) models describing this type of dissolution exist and have been validated with semi-analytical models on simple cases like a rising bubble in a liquid column. However, DNS models have not been experimentally validated for more complicated scenarios such as dissolution of trapped CO2 bubbles in pore geometries where there are few experimental datasets. In this work we present an experimental and numerical study of trapping and dissolution of CO2 bubbles in 3D printed micromodel geometries. We use 3D printing technology to generate three different geometries, a single cavity geometry, a triple cavity geometry and a multiple channel geometry. In order to investigate the repeatability of the trapping and dissolution experimental results, each geometry is printed three times and three identical experiments are performed for each geometry. The experiments are performed at low capillary number representative of flow during CO2 storage applications. DNS simulations are then performed and compared with the experimental results. Our results show experimental reproducibility and consistency in terms of CO2 trapping and the CO2 dissolution process. At such low capillary number, our numerical simulator cannot model the process accurately due to parasitic currents and the strong time step constraints associated with capillary waves. However, we show that, for the single and triple cavity geometry

    T cell metabolism drives immunity

    Get PDF
    Lymphocytes must adapt to a wide array of environmental stressors as part of their normal development, during which they undergo a dramatic metabolic remodeling process. Research in this area has yielded surprising findings on the roles of diverse metabolic pathways and metabolites, which have been found to regulate lymphocyte signaling and influence differentiation, function and fate. In this review, we integrate the latest findings in the field to provide an up-to-date resource on lymphocyte metabolism

    Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don't Forget the Fuel.

    Get PDF
    T-cells play a critical role in tumor immunity. Indeed, the presence of tumor-infiltrating lymphocytes is a predictor of favorable patient prognosis for many indications and is a requirement for responsiveness to immune checkpoint blockade therapy targeting programmed cell death 1. For tumors lacking immune infiltrate, or for which antigen processing and/or presentation has been downregulated, a promising immunotherapeutic approach is chimeric antigen receptor (CAR) T-cell therapy. CARs are hybrid receptors that link the tumor antigen specificity and affinity of an antibody-derived single-chain variable fragment with signaling endodomains associated with T-cell activation. CAR therapy targeting CD19 has yielded extraordinary clinical responses against some hematological tumors. Solid tumors, however, remain an important challenge to CAR T-cells due to issues of homing, tumor vasculature and stromal barriers, and a range of obstacles in the tumor bed. Protumoral immune infiltrate including T regulatory cells and myeloid-derived suppressor cells have been well characterized for their ability to upregulate inhibitory receptors and molecules that hinder effector T-cells. A critical role for metabolic barriers in the tumor microenvironment (TME) is emerging. High glucose consumption and competition for key amino acids by tumor cells can leave T-cells with insufficient energy and biosynthetic precursors to support activities such as cytokine secretion and lead to a phenotypic state of anergy or exhaustion. CAR T-cell expansion protocols that promote a less differentiated phenotype, combined with optimal receptor design and coengineering strategies, along with immunomodulatory therapies that also promote endogenous immunity, offer great promise in surmounting immunometabolic barriers in the TME and curing solid tumors

    Human Double-Negative Regulatory T-Cells Induce a Metabolic and Functional Switch in Effector T-Cells by Suppressing mTOR Activity

    Get PDF
    The recently discovered population of TCRαβ+ CD4–/CD8– (double-negative, DN) T-cells are highly potent suppressor cells in mice and humans. In preclinical transplantation models, adoptive transfer of DN T-cells specifically inhibits alloreactive T-cells and prevents transplant rejection or graft-vs.-host disease (GvHD). Interestingly, clinical studies in patients who underwent allogeneic stem cell transplantation reveal an inverse correlation between the frequency of circulating DN T-cells and the severity of GvHD, suggesting a therapeutic potential of human DN T-cells. However, their exact mode of action has not been elucidated yet. Investigating the impact of DN T-cells on conventional T-cells, we found that human DN T-cells selectively inhibit mTOR signaling in CD4 T-cells. Given that mTOR is a critical regulator of cellular metabolism, we further determined the impact of DN T-cells on the metabolic framework of T-cells. Intriguingly, DN T-cells diminished expression of glucose transporters and glucose uptake, whereas fatty acid uptake was not modified, indicating that DN T-cells prevent metabolic adaptation of CD4 T-cells upon activation (i.e., glycolytic switch) thereby contributing to their suppression. Further analyses demonstrated that CD4 T-cells also do not upregulate homing receptors associated with inflammatory processes. In contrast, expression of central memory-cell associated cell surface markers and transcription factors were increased by DN T-cells. Moreover, CD4 T-cells failed to produce inflammatory cytokines after co-culture with DN T-cells, whereas IL-2 secretion was enhanced. Taken together DN T-cells impair metabolic reprogramming of conventional CD4 T-cells by abrogating mTOR signaling, thereby modulating CD4 T-cell functionality. These results uncover a new mechanism of DN T-cell-mediated suppression, pointing out that DN T-cells could serve as cell-based therapy to limit alloreactive immune response
    corecore