52 research outputs found

    Maternal oral health status and preterm low birth weight at Muhimbili National Hospital, Tanzania: a case-control study

    Get PDF
    The study examined the relationship between oral health status (periodontal disease and carious pulpal exposure (CPE)) and preterm low-birth-weight (PTLBW) infant deliveries among Tanzanian-African mothers at Muhimbili National Hospital (MNH), Tanzania. A retrospective case-control study was conducted, involving 373 postpartum mothers aged 14-44 years (PTLBW--150 cases) and at term normal-birth-weight (TNBW)--223 controls), using structured questionnaire and full-mouth examination for periodontal and dentition status. The mean number of sites with gingival bleeding was higher in PTLBW than in TNBW (P = 0.026). No significant differences were observed for sites with plaque, calculus, teeth with decay, missing, filling (DMFT) between PTLBW and TNBW. Controlling for known risk factors in all post-partum (n = 373), and primiparaous (n = 206) mothers, no significant differences were found regarding periodontal disease diagnosis threshold (PDT) (four sites or more that had probing periodontal pocket depth 4+mm and gingival bleeding > or = 30% sites), and CPE between cases and controls. Significant risk factors for PTLBW among primi- and multiparous mothers together were age < or = 19 years (adjusted Odds Ratio (aOR) = 2.09, 95% Confidence interval (95% CI): 1.18-3.67, P = 0.011), hypertension (aOR = 2.44, (95% CI): 1.20-4.93, P = 0.013) and being un-married (aOR = 1.59, (95% CI): 1.00-2.53, P = 0.049). For primiparous mothers significant risk factors for PTLBW were age < or = 19 years (aOR = 2.07, 95% CI: 1.13 - 3.81, P = 0.019), and being un-married (aOR = 2.58, 95% CI: 1.42-4.67, P = 0.002). These clinical findings show no evidence for periodontal disease or carious pulpal exposure being significant risk factors in PTLBW infant delivery among Tanzanian-Africans mothers at MNH, except for young age, hypertension, and being unmarried. Further research incorporating periodontal pathogens is recommended

    Animal models of alcohol and drug dependence

    Get PDF
    Drug addiction has serious health and social consequences. In the last 50 years, a wide range of techniques have been developed to model specific aspects of drug-taking behaviors and have greatly contributed to the understanding of the neurobiological basis of drug abuse and addiction. In the last two decades, new models have been proposed in an attempt to capture the more genuine aspects of addiction-like behaviors in laboratory animals. The goal of the present review is to provide an overview of the preclinical procedures used to study drug abuse and dependence and describe recent progress that has been made in studying more specific aspects of addictive behavior in animals.Universidade Estadual Paulista School of Pharmaceutical SciencesUniversidade Estadual Paulista School of Pharmaceutical Science

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
    corecore