13,323 research outputs found

    Large deviation asymptotics for occupancy problems

    Full text link
    In the standard formulation of the occupancy problem one considers the distribution of r balls in n cells, with each ball assigned independently to a given cell with probability 1/n. Although closed form expressions can be given for the distribution of various interesting quantities (such as the fraction of cells that contain a given number of balls), these expressions are often of limited practical use. Approximations provide an attractive alternative, and in the present paper we consider a large deviation approximation as r and n tend to infinity. In order to analyze the problem we first consider a dynamical model, where the balls are placed in the cells sequentially and ``time'' corresponds to the number of balls that have already been thrown. A complete large deviation analysis of this ``process level'' problem is carried out, and the rate function for the original problem is then obtained via the contraction principle. The variational problem that characterizes this rate function is analyzed, and a fairly complete and explicit solution is obtained. The minimizing trajectories and minimal cost are identified up to two constants, and the constants are characterized as the unique solution to an elementary fixed point problem. These results are then used to solve a number of interesting problems, including an overflow problem and the partial coupon collector's problem.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000013

    Managing a Farm in the Corn Borer Area

    Get PDF
    PDF pages: 2

    Real Interest Rate, Credit Markets, and Economic Stabilization

    Get PDF
    The role of a real interest rate and a credit aggregate as intermediate monetary policy targets are investigated under the assumption of rational expectations. The analysis expands a standard aggregate model to include a credit market and a market determined interest rate on bank deposits. This allows the implications for output stabilization of real interest rate policy to be examined for a wider variety of shocks than normally considered in the literature, as well as allowing a credit aggregate policy to be studied.

    -Generic Computability, Turing Reducibility and Asymptotic Density

    Full text link
    Generic computability has been studied in group theory and we now study it in the context of classical computability theory. A set A of natural numbers is generically computable if there is a partial computable function f whose domain has density 1 and which agrees with the characteristic function of A on its domain. A set A is coarsely computable if there is a computable set C such that the symmetric difference of A and C has density 0. We prove that there is a c.e. set which is generically computable but not coarsely computable and vice versa. We show that every nonzero Turing degree contains a set which is not coarsely computable. We prove that there is a c.e. set of density 1 which has no computable subset of density 1. As a corollary, there is a generically computable set A such that no generic algorithm for A has computable domain. We define a general notion of generic reducibility in the spirt of Turing reducibility and show that there is a natural order-preserving embedding of the Turing degrees into the generic degrees which is not surjective

    FINANCIAL RISK IN COTTON PRODUCTION

    Get PDF
    Risk analysis continues to emphasize price and yield variability as the principal components of the decision-maker's risk environment. This research demonstrates the relative importance of financial risk for a representative cotton farm in Arizona. For highly leveraged operations, financial risk may account for 70 percent of the total risk faced by the producer. Implications for future risk analysis are discussed in light of these findings.Crop Production/Industries, Risk and Uncertainty,

    Asymptotic density and the Ershov hierarchy

    Get PDF
    We classify the asymptotic densities of the Δ20\Delta^0_2 sets according to their level in the Ershov hierarchy. In particular, it is shown that for n2n \geq 2, a real r[0,1]r \in [0,1] is the density of an nn-c.e.\ set if and only if it is a difference of left-Π20\Pi_2^0 reals. Further, we show that the densities of the ω\omega-c.e.\ sets coincide with the densities of the Δ20\Delta^0_2 sets, and there are ω\omega-c.e.\ sets whose density is not the density of an nn-c.e. set for any nωn \in \omega.Comment: To appear in Mathematical Logic Quarterl
    corecore