1,383 research outputs found

    Leishmaniasis: new approaches to disease control.

    Get PDF
    The leishmaniases afflict the world's poorest populations. Among the two million new cases each year in the 88 countries where the disease is endemic (fig 1), it is estimated that 80% earn less than $2 a day. Human infections with Leishmania protozoan parasites, transmitted via the bite of a sandfly, cause visceral, cutaneous, or mucocutaneous leishmaniasis. The global burden of leishmaniasis has remained stable for some years, causing 2.4 million disability adjusted life years (DALYs) lost and 59 000 deaths in 2001. Neglected by researchers and funding agencies, leishmaniasis control strategies have varied little for decades, but in recent years there have been exciting advances in diagnosis, treatment, and prevention. These include an immunochromatographic dipstick for diagnosing visceral leishmaniasis; the licensing of miltefosine, the first oral drug for visceral leishmaniasis; and evidence that the incidence of zoonotic visceral leishmaniasis in children can be reduced by providing dogs with deltamethrin collars. There is also hope that the first leishmaniasis vaccine will become available within a decade. Here we review these developments and identify priorities for research

    Physical effects on the Lyman-alpha forest flux power spectrum: damping wings, ionizing radiation fluctuations, and galactic winds

    Full text link
    We explore several physical effects on the power spectrum of the Lyman-alpha forest transmitted flux. The effects we investigate here are usually not part of hydrodynamic simulations and so need to be estimated separately. The most important effect is that of high column density absorbers with damping wings, which add power on large scales. We compute their effect using the observational constraints on their abundance as a function of column density. Ignoring their effect leads to an underestimation of the slope of the linear theory power spectrum. The second effect we investigate is that of fluctuations in the ionizing radiation field. For this purpose we use a very large high resolution N-body simulation, which allows us to simulate both the fluctuations in the ionizing radiation and the small scale LyaF within the same simulation. We find an enhancement of power on large scales for quasars and a suppression for galaxies. The strength of the effect rapidly increases with increasing redshift, allowing it to be uniquely identified in cases where it is significant. We develop templates which can be used to search for this effect as a function of quasar lifetime, quasar luminosity function, and attenuation length. Finally, we explore the effects of galactic winds using hydrodynamic simulations. We find the wind effects on the LyaF power spectrum to be be degenerate with parameters related to the temperature of the gas that are already marginalized over in cosmological fits. While more work is needed to conclusively exclude all possible systematic errors, our results suggest that, in the context of data analysis procedures where parameters of the LyaF model are properly marginalized over, the flux power spectrum is a reliable tracer of cosmological information.Comment: 13 pages, 8 figures, to be submitted to MNRA

    Evolution of the Cluster Mass and Correlation Functions in LCDM Cosmology

    Full text link
    The evolution of the cluster mass function and the cluster correlation function from z = 0 to z = 3 are determined using 10^6 clusters obtained from high-resolution simulations of the current best-fit LCDM cosmology (\Omega_m = 0.27, \sigma_8 = 0.84, h = 0.7). The results provide predictions for comparisons with future observations of high redshift clusters. A comparison of the predicted mass function of low redshift clusters with observations from early Sloan Digital Sky Survey data, and the predicted abundance of massive distant clusters with observational results, favor a slightly larger amplitude of mass fluctuations (\sigma_8 = 0.9) and lower density parameter (\Omega_m = 0.2); these values are consistent within 1-\sigma with the current observational and model uncertainties. The cluster correlation function strength increases with redshift for a given mass limit; the clusters were more strongly correlated in the past, due to their increasing bias with redshift - the bias reaches b = 100 at z = 2 for M > 5 x 10^13 h^-1 M_sun. The richness-dependent cluster correlation function, represented by the correlation scale versus cluster mean separation relation, R0-d, is generally consistent with observations. This relation can be approximated as R_0 = 1.7 d^0.6 h^-1 Mpc for d = 20 - 60 h^-1 Mpc. The R0-d relation exhibits surprisingly little evolution with redshift for z < 2; this can provide a new test of the current LCDM model when compared with future observations of high redshift clusters.Comment: 20 pages, 9 figures, accepted for publication in Ap

    Evolution of the Cluster Correlation Function

    Full text link
    We study the evolution of the cluster correlation function and its richness-dependence from z = 0 to z = 3 using large-scale cosmological simulations. A standard flat LCDM model with \Omega_m = 0.3 and, for comparison, a tilted \Omega_m = 1 model, TSCDM, are used. The evolutionary predictions are presented in a format suitable for direct comparisons with observations. We find that the cluster correlation strength increases with redshift: high redshift clusters are clustered more strongly (in comoving scale) than low redshift clusters of the same mass. The increased correlations with redshift, in spite of the decreasing mass correlation strength, is caused by the strong increase in cluster bias with redshift: clusters represent higher density peaks of the mass distribution as the redshift increases. The richness-dependent cluster correlation function, presented as the correlation-scale versus cluster mean separation relation, R_0 - d, is found to be, remarkably, independent of redshift to z <~ 2 for LCDM and z <~ 1 for TCDM (for a fixed correlation function slope and cluster mass within a fixed comoving radius). The non-evolving R_0 - d relation implies that both the comoving clustering scale and the cluster mean separation increase with redshift for the same mass clusters so that the R_0 - d relation remains essentially unchanged. The evolution of the R_0 - d relation from z ~ 0 to z ~ 3 provides an important new tool in cosmology; it can be used to break degeneracies that exist at z ~ 0 and provide precise determination of cosmological parameters.Comment: AASTeX, 15 pages, including 5 figures, accepted version for publication in ApJ, vol.603, March 200

    Leaf chlorophyll content as a proxy for leaf photosynthetic capacity.

    Get PDF
    Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013-2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf ) and canopy structure. Leaf nitrogen (NArea ) was also measured during 2014. Leaf photosynthesis was measured during 2014-2015 using a Li-6400 gas-exchange system, with A-Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C (Vcmax25) and NArea (R2  = 0.62, P &lt; 0.001), whereas ChlLeaf demonstrated a much stronger correlation with Vcmax25 (R2  = 0.78, P &lt; 0.001). The relationship between ChlLeaf and NArea was also weak (R2  = 0.47, P &lt; 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of Vcmax25 was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf . TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea -Vcmax25 relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that ChlLeaf provides a more accurate, direct proxy for Vcmax25 and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems

    Incorporating leaf chlorophyll content into a two-leaf terrestrial biosphere model for estimating carbon and water fluxes at a forest site

    Get PDF
    Chlorophyll is the main light-harvesting pigment in leaves, facilitating photosynthesis and indicating the supply of nitrogen for photosynthetic enzymes. In this study, we explore the feasibility of integrating leaf chlorophyll content (Chlleaf) into a Terrestrial Biosphere Model (TBM), as a proxy for the leaf maximum carboxylation rate at 25°C (Vmax25), for the purpose of improving carbon and water flux estimation. Measurements of Chlleaf and Vmax25 were made in a deciduous forest stand at the Borden Forest Research Station in southern Ontario, Canada, where carbon and water fluxes were measured by the eddy covariance method. The use of Chlleaf-based Vmax25 in the TBM significantly reduces the bias of estimated gross primary productivity (GPP) and evapotranspiration (ET) and improves the temporal correlations between the simulated and the measured fluxes, relative to the commonly employed cases of using specified constant Vmax25, leaf area index (LAI)-based Vmax25 or specific leaf area (SLA)-based Vmax25. The biggest improvements are found in spring and fall, when the mean absolute errors (MAEs) between modelled and measured GPP are reduced from between 2.2–3.2 to 1.8gCm−2d−1 in spring and from between 2.1–2.8 to 1.8gCm−2 d−1 in fall. The MAEs in ET estimates are reduced from 0.7–0.8mmd−1 to 0.6mmd−1 in spring, but no significant improvement is noted in autumn. A two-leaf upscaling scheme is used to account for the uneven distribution of incoming solar radiation inside canopies and the associated physiological differences between leaves. We found that modelled Vmax25 in sunlit leaves is 34% larger than in the shaded leaves of the same Chlleaf, which echoes previous physiological studies on light acclimation of plants. This study represents the first case of the incorporation of chlorophyll as a proxy for Vmax25 in a two-leaf TBM at a forest stand and demonstrates the efficacy of using chlorophyll to constrain Vmax25 and reduce the uncertainties in GPP and ET simulations
    corecore