3,187 research outputs found

    A high stability optical shadow sensor with applications for precision accelerometers

    No full text
    Displacement sensors are found in a variety of applications including gravitational wave detectors, precision metrology, tissue imaging, gravimeters, microscopy, and environmental monitoring. Most of these applications benefit from the use of displacement sensors that offer both high precision and stability. This is particularly the case for gravimetry where measurements are often taken over multi-day timescales. In this paper we describe a custom-built microcontroller-based displacement sensor that has been utilized in a micro-electromechanicalsystem gravimeter. The system runs off battery power and is low-cost, portable, and lightweight. Using an optical shadow sensor technique, and by designing a digital lock-in amplier based around a dsPIC33 microcontroller, we demonstrate a displacement sensitivity of 10 nm/Hz down to 300 s, and an rms sensitivity of 1 nm over timescales of one day. The system also provides real time monitoring/control of temperature, using an AD7195 ratiometric bridge to provide mK control of three separate PT100 sensors. Furthermore, a tilt sensor conditioning circuit is incorporated to drive a pair of electrolytic tilt sensors, resulting in the ability to monitor 2 axis tilt at the level of 1 microradian over approximately 1 day. The sensor system described is thus multifunctional and capable of being incorporated into precision accelerometers/gravimeters, or indeed other applications where long term displacement/temperature monitoring is necessary

    Sub-shot-noise shadow sensing with quantum correlations

    Get PDF
    The quantised nature of the electromagnetic field sets the classical limit to the sensitivity of position measurements. However, techniques based on the properties of quantum states can be exploited to accurately measure the relative displacement of a physical object beyond this classical limit. In this work, we use a simple scheme based on the split-detection of quantum correlations to measure the position of a shadow at the single-photon light level, with a precision that exceeds the shot-noise limit. This result is obtained by analysing the correlated signals of bi-photon pairs, created in parametric downconversion and detected by an electron multiplying CCD (EMCCD) camera employed as a split-detector. By comparing the measured statistics of spatially anticorrelated and uncorrelated photons we were able to observe a significant noise reduction corresponding to an improvement in position sensitivity of up to 17% (0.8dB). Our straightforward approach to sub-shot-noise position measurement is compatible with conventional shadow-sensing techniques based on the split-detection of light-fields, and yields an improvement that scales favourably with the detector’s quantum efficiency

    Field tests of a portable MEMS gravimeter

    Get PDF
    Gravimeters are used to measure density anomalies under the ground. They are applied in many different fields from volcanology to oil and gas exploration, but present commercial systems are costly and massive. A new type of gravity sensor has been developed that utilises the same fabrication methods as those used to make mobile phone accelerometers. In this study, we describe the first results of a field-portable microelectromechanical system (MEMS) gravimeter. The stability of the gravimeter is demonstrated through undertaking a multi-day measurement with a standard deviation of 5.58 × 10−6 ms−2 . It is then demonstrated that a change in gravitational acceleration of 4.5 × 10−5 ms−2 can be measured as the device is moved between the top and the bottom of a 20.7 m lift shaft with a signal-to-noise ratio (SNR) of 14.25. Finally, the device is demonstrated to be stable in a more harsh environment: a 4.5 × 10−4 ms−2 gravity variation is measured between the top and bottom of a 275-m hill with an SNR of 15.88. These initial field-tests are an important step towards a chip-sized gravity senso

    Microelectromechanical system gravimeters as a new tool for gravity imaging

    Get PDF
    A microelectromechanical system (MEMS) gravimeter has been manufactured with a sensitivity of 40 ppb in an integration time of 1 s. This sensor has been used to measure the Earth tides: the elastic deformation of the globe due to tidal forces. No such measurement has been demonstrated before now with a MEMS gravimeter. Since this measurement, the gravimeter has been miniaturized and tested in the field. Measurements of the free-air and Bouguer effects have been demonstrated by monitoring the change in gravitational acceleration measured while going up and down a lift shaft of 20.7 m, and up and down a local hill of 275 m. These tests demonstrate that the device has the potential to be a useful field-portable instrument. The development of an even smaller device is underway, with a total package size similar to that of a smartphone

    A QCL model with integrated thermal and stark rollover mechanisms

    Get PDF
    There is a need for a model that accurately describes dynamics of a bound-to-continuum terahertz quantum cascade laser over its full range of operating temperatures and bias conditions. In this paper we propose a compact model which, through the inclusion of thermal and Stark effects, accurately reproduces the light-current characteristics of an exemplar bound-to-continuum terahertz quantum cascade laser. Through this model, we investigate the dynamics of this laser with a view to applications in high-speed free space communications

    Polyolefin–polar block copolymers from versatile new macromonomers

    Get PDF
    A new metallocene-based polymerization mechanism is elucidated in which a zirconium hydride center inserts α-methylstyrene at the start of a polymer chain. The hydride is then regenerated by hydrogenation to release a polyolefin containing a single terminal α-methylstyrenyl group. Through the use of the difunctional monomer 1,3-diisopropenylbenzene, this catalytic hydride insertion polymerization is applied to the production of linear polyethylene and ethylene–hexene copolymers containing an isopropenylbenzene end group. Conducting simple radical polymerizations in the presence of this new type of macromonomer leads to diblock copolymers containing a polyolefin attached to an acrylate, methacrylate, vinyl ester, or styrenic segments. The new materials are readily available and exhibit interfacial phenomena, including the mediation of the mixing of immiscible polymer blends

    Semantic diversity:A measure of contextual variation in word meaning based on latent semantic analysis

    Get PDF
    Semantic ambiguity is typically measured by summing the number of senses or dictionary definitions that a word has. Such measures are somewhat subjective and may not adequately capture the full extent of variation in word meaning, particularly for polysemous words that can be used in many different ways, with subtle shifts in meaning. Here, we describe an alternative, computationally derived measure of ambiguity based on the proposal that the meanings of words vary continuously as a function of their contexts. On this view, words that appear in a wide range of contexts on diverse topics are more variable in meaning than those that appear in a restricted set of similar contexts. To quantify this variation, we performed latent semantic analysis on a large text corpus to estimate the semantic similarities of different linguistic contexts. From these estimates, we calculated the degree to which the different contexts associated with a given word vary in their meanings. We term this quantity a word's semantic diversity (SemD). We suggest that this approach provides an objective way of quantifying the subtle, context-dependent variations in word meaning that are often present in language. We demonstrate that SemD is correlated with other measures of ambiguity and contextual variability, as well as with frequency and imageability. We also show that SemD is a strong predictor of performance in semantic judgments in healthy individuals and in patients with semantic deficits, accounting for unique variance beyond that of other predictors. SemD values for over 30,000 English words are provided as supplementary materials. © 2012 Psychonomic Society, Inc
    corecore