4,355 research outputs found
Recommended from our members
Chemical underpinning of the tea bag index: An examination of the decomposition of tea leaves
Decomposition is a key flux of terrestrial carbon to the atmosphere. Therefore, gaining a better understanding of how plant litter decomposes in soil, and what governs this process, is vital for global climate models. The Tea Bag Index (TBI) was introduced by Keuskamp et al. (2013) as a novel method for measuring litter decomposition rate and stabilisation. The TBI uses two types of tea bags representing fast (green tea) and slow (rooibos tea) decomposition substrates as standardised litter bags. To date, the TBI method has been used in over 2000 locations across the globe. However, before now, there has been no information on how the composition of the tea leaves change during incubation. These data are crucial in determining the validity of the use of the TBI method globally, to ensure the tea leaves decompose in a way that is representative of so-called “native” litters. To provide chemical underpinning of the TBI method, a laboratory incubation of the tea bags was conducted with destructive sampling at 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, and 91 d. The incubated tea was analysed for total C and N. In addition, C was characterised as alkyl, O-alkyl, aromatic, or carbonyl C using solid-state 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic angle spinning (CPMAS NMR). The results suggest that changes in carbon in both tea types are comparable to other litter studies, with a net decrease in total C and relative proportion of O-alkyl C fraction, which contains carbohydrates and cellulose. We conclude that the decomposition of tea leaves in the bags used in the TBI is representative of other litters
Distance dependence of excitation energy transfer between spacer-separated conjugated polymer films
We report a systematic study of the scaling with distance of electronic energy transfer between thin films of conjugated polymers separated by a silica spacer. The energy-transfer kinetics were obtained directly from time-resolved photoluminescence measurements and show a 1/ z3 distance dependence of the transfer rate between the excited donor and the acceptor film for z≥8 nm. This is consistent with Förster theory; but at shorter separations the energy transfer is slower than predicted and can be explained by the breakdown of the point-dipole approximation at z∼5 nm. The results are relevant for organic photovoltaics and light-emitting devices, where energy transfer can provide a means of increasing performance
Accurate Realizations of the Ionized Gas in Galaxy Clusters: Calibrating Feedback
Using the full, three-dimensional potential of galaxy cluster halos (drawn
from an N-body simulation of the current, most favored cosmology), the
distribution of the X-ray emitting gas is found by assuming a polytropic
equation of state and hydrostatic equilibrium, with constraints from
conservation of energy and pressure balance at the cluster boundary. The
resulting properties of the gas for these simulated redshift zero clusters (the
temperature distribution, mass-temperature and luminosity-temperature
relations, and the gas fraction) are compared with observations in the X-ray of
nearby clusters. The observed properties are reproduced only under the
assumption that substantial energy injection from non-gravitational sources has
occurred. Our model does not specify the source, but star formation and AGN may
be capable of providing this energy, which amounts to 3 to 5 x10^{-5} of the
rest mass in stars (assuming ten percent of the gas initially in the cluster
forms stars). With the method described here it is possible to generate
realistic X-ray and Sunyaev-Zel'dovich cluster maps and catalogs from N-body
simulations, with the distributions of internal halo properties (and their
trends with mass, location, and time) taken into account.Comment: Matches ApJ published version; 30 pages, 7 figure
Recommended from our members
A comparison of physical soil organic matter fractionation methods for amended soils
Selecting a suitable physical fractionation method, to investigate soil organic matter dynamics, from the
plethora that are available is a difficult task. Using five different physical fractionation methods, on soils either nontreated or with a history of amendment
with a range of exogenous organic matter inputs (Irish moss peat; composted horse manure; garden compost) and a resulting range of carbon contents (6.8 to 22.2%), we show that method selection had a significant impact on both the total C recovered and the distribution of the recovered C between unprotected, physically protected, or chemically protected conceptual pools. These between-method differences most likely resulted from the following: (i) variation in the methodological fractions obtained (i.e., distinguishing between aggregate size classes); (ii) their subsequent designation to conceptual pools (e.g., protected versus unprotected); and (iii) the procedures used in sample pretreatment and subsequent aggregate dispersion and fractionation steps. The performance of each method also varied depending on the amendment in question. The findings emphasise the need for an understanding of the nature of the soil samples under investigation, and the stabilisation mechanism of interest, both prior to method selection and when comparing and interpreting findings from literature studies using different fractionation methods
Low-threshold organic laser based on an oligofluorene truxene with low optical losses
A blue-emitting distributed feedback laser based on a star-shaped oligofluorene truxene molecule is presented. The gain, loss, refractive index, and (lack of) anisotropy are measured by amplified spontaneous emission and variable-angle ellipsometry. The waveguide losses are very low for an organic semiconductor gain medium, particularly for a neat film. The results suggest that truxenes are promising for reducing loss, a key parameter in the operation of organic semiconductor lasers. Distributed feedback lasers fabricated from solution by spin-coating show a low lasing threshold of 270 W/cm(2) and broad tunability across 25 nm in the blue part of the spectrum
Characterization and Quantification of Isoprene-Derived Epoxydiols in Ambient Aerosol in the Southeastern United States
Isoprene-derived epoxydiols (IEPOX) are identified in ambient aerosol samples for the first time, together with other previously identified isoprene tracers (i.e., 2-methyltetrols, 2-methylglyceric acid, C5-alkenetriols, and organosulfate derivatives of 2-methyltetrols). Fine ambient aerosol collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS) was analyzed using both gas chromatography/quadrupole mass spectrometry (GC/MS) and gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) with prior trimethylsilylation. Mass concentrations of IEPOX ranged from ~1 to 24 ng m^(−3) in the aerosol collected from the two sites. Detection of particle-phase IEPOX in the AMIGAS samples supports recent laboratory results that gas-phase IEPOX produced from the photooxidation of isoprene under low-NO_x conditions is a key precursor of ambient isoprene secondary organic aerosol (SOA) formation. On average, the sum of the mass concentrations of IEPOX and the measured isoprene SOA tracers accounted for about 3% of the organic carbon, demonstrating the significance of isoprene oxidation to the formation of ambient aerosol in this region
Observations and modeling of H_2 fluorescence with partial frequency redistribution in giant planet atmospheres
Partial frequency redistribution (PRD), describing the formation of the line
profile, has negligible observational effects for optical depths smaller than
~10^3, at the resolving power of most current instruments. However, when the
spectral resolution is sufficiently high, PRD modeling becomes essential in
interpreting the line shapes and determining the total line fluxes. We
demonstrate the effects of PRD on the H_2 line profiles observed at high
spectral resolution by the Far-Ultraviolet Spectroscopic Explorer (FUSE) in the
atmospheres of Jupiter and Saturn. In these spectra, the asymmetric shapes of
the lines in the Lyman (v"- 6) progression pumped by the solar Ly-beta are
explained by coherent scattering of the photons in the line wings. We introduce
a simple computational approximation to mitigate the numerical difficulties of
radiative transfer with PRD, and show that it reproduces the exact radiative
transfer solution to better than 10%. The lines predicted by our radiative
transfer model with PRD, including the H_2 density and temperature distribution
as a function of height in the atmosphere, are in agreement with the line
profiles observed by FUSE. We discuss the observational consequences of PRD,
and show that this computational method also allows us to include PRD in
modeling the continuum pumped H_2 fluorescence, treating about 4000 lines
simultaneously.Comment: 17 pages, accepted for publication in Ap
Helium: visualization of large scale plant pedigrees
Plant breeders use an increasingly diverse range of data types to identify lines with desirable characteristics suitable to be taken forward in plant breeding programmes. There are a number of key morphological and physiological traits, such as disease resistance and yield, that need to be maintained and improved upon if a commercial variety is to be successful. Computational tools that provide the ability to integrate and visualize this data with pedigree structure, will enable breeders to make better decisions on the lines that are used in crossings to meet both the demands for increased yield/production and adaptation to climate change. We have used a large and unique set of experimental barley (H. vulgare) data to develop a prototype pedigree visualization system. We then used this prototype to perform a subjective user evaluation with domain experts to guide and direct the development of an interactive pedigree visualization tool called Helium. We show that Helium allows users to easily integrate a number of data types along with large plant pedigrees to offer an integrated environment in which they can explore pedigree data. We have also verified that users were happy with the abstract representation of pedigrees that we have used in our visualization tool
Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles
During the measurement campaign FROST 2 (FReezing Of duST 2), the Leipzig Aerosol Cloud Interaction Simulator (LACIS) was used to investigate the influence of various surface modifications on the ice nucleating ability of Arizona Test Dust (ATD) particles in the immersion freezing mode. The dust particles were exposed to sulfuric acid vapor, to water vapor with and without the addition of ammonia gas, and heat using a thermodenuder operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diameter of 300 nm were fed into LACIS and droplets grew on these particles such that each droplet contained a single particle. Temperature dependent frozen fractions of these droplets were determined in a temperature range between −40 °C ≤T≤−28 °C. The pure ATD particles nucleated ice over a broad temperature range with their freezing behavior being separated into two freezing branches characterized through different slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with sulfuric acid resulted in the particles' IN potential significantly decreasing in the first freezing branch (T>−35 °C) and a slight increase in the second branch (T≤−35 °C). The addition of water vapor after the sulfuric acid coating caused the disappearance of the first freezing branch and a strong reduction of the IN ability in the second freezing branch. The presence of ammonia gas during water vapor exposure had a negligible effect on the particles' IN ability compared to the effect of water vapor. Heating in the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles for both branches but the additional heat did not or only slightly change the IN ability of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other words, the combination of both sulfuric acid and water vapor being present is a main cause for the ice active surface features of the ATD particles being destroyed. A possible explanation could be the chemical transformation of ice active metal silicates to metal sulfates. The strongly enhanced reaction between sulfuric acid and dust in the presence of water vapor and the resulting significant reductions in IN potential are of importance for atmospheric ice cloud formation. Our findings suggest that the IN concentration can decrease by up to one order of magnitude for the conditions investigated
The Impact of Halo Properties, Energy Feedback and Projection Effects on the Mass-SZ Flux Relation
We present a detailed analysis of the intrinsic scatter in the integrated SZ
effect - cluster mass (Y-M) relation, using semi-analytic and simulated cluster
samples. Specifically, we investigate the impact on the Y-M relation of energy
feedback, variations in the host halo concentration and substructure
populations, and projection effects due to unresolved clusters along the line
of sight (the SZ background). Furthermore, we investigate at what radius (or
overdensity) one should measure the integrated SZE and define cluster mass so
as to achieve the tightest possible scaling. We find that the measure of Y with
the least scatter is always obtained within a smaller radius than that at which
the mass is defined; e.g. for M_{200} (M_{500}) the scatter is least for
Y_{500} (Y_{1100}). The inclusion of energy feedback in the gas model
significantly increases the intrinsic scatter in the Y-M relation due to larger
variations in the gas mass fraction compared to models without feedback. We
also find that variations in halo concentration for clusters of a given mass
may partly explain why the integrated SZE provides a better mass proxy than the
central decrement. Substructure is found to account for approximately 20% of
the observed scatter in the Y-M relation. Above M_{200} = 2x10^{14} h^{-1}
msun, the SZ background does not significantly effect cluster mass
measurements; below this mass, variations in the background signal reduce the
optimal angular radius within which one should measure Y to achieve the
tightest scaling with M_{200}.Comment: 12 pages, 6 figures, to be submitted to Ap
- …
