31,832 research outputs found

    Anisotropic magnetization and resistivity of single crystalline RNi1-xBi2+-y (R = La-Nd, Sm, Gd-Dy)

    Get PDF
    We present a detailed study of RNi1-xBi2+-y (R = La-Nd, Sm, Gd-Dy) single crystals by measurements of stoichiometry and temperature dependent magnetic susceptibility, magnetization, and electrical resistivity. This series forms with partial Ni occupancy as well as a variable Bi occupancy. For R = Ce-Nd, Sm, Gd-Dy, the RNi1-xBi2+-y compounds show local-moment like behavior and order antiferromagnetically at low temperatures. Determination of anisotropies as well as antiferromagnetic ordering temperatures for RNi1-xBi2+-y (R = Ce-Nd, Sm, Gd-Dy) have been made. Although crystalline samples from this family exhibit minority, second phase superconductivity at low temperatures associated with Ni-Bi and Bi contamination, no evidence of bulk superconductivity has been observed

    Enhancement of the superconducting gap by nesting in CaKFe4As4 - a new high temperature superconductor

    Get PDF
    We use high resolution angle resolved photoemission spectroscopy and density functional theory with experimentally obtained crystal structure parameters to study the electronic properties of CaKFe4As4. In contrast to related CaFe2As2 compounds, CaKFe4As4 has high Tc of 35K at stochiometric composition. This presents unique opportunity to study properties of high temperature superconductivity of iron arsenic superconductors in absence of doping or substitution. The Fermi surface consists of three hole pockets at Γ\Gamma and two electron pockets at the MM point. We find that the values of the superconducting gap are nearly isotropic, but significantly different for each of the FS sheets. Most importantly we find that the overall momentum dependence of the gap magnitudes plotted across the entire Brillouin zone displays a strong deviation from the simple cos(kx)cos(ky) functional form of the gap function, proposed in the scenario of the Cooper-pairing driven by a short range antiferromagnetic exchange interaction. Instead, the maximum value of the gap is observed for FS sheets that are closest to the ideal nesting condition in contrast to the previous observations in some other ferropnictides. These results provide strong support for the multiband character of superconductivity in CaKFe4As4, in which Cooper pairing forms on the electron and the hole bands interacting via dominant interband repulsive interaction, enhanced by FS nesting}.Comment: 5 pages, 4 figure
    corecore