16 research outputs found
Intertwined αβ Spectrin Meeting Helical Actin Protofilament in the Erythrocyte Membrane Skeleton: Wrap-Around vs. Point-Attachment
Our 3-D model for a junctional complex (JC) in the erythrocyte membrane skeleton proposed that the helical actin protofilament functions as a mechanical axis for three pairs of αβ spectrin (Sp), and each pair wraps around the protofilament in a back-to-back fashion. The distal end of each Sp is further associated with the lipid bilayer by a suspension complex (SC). Here, we detail how splitting and rejoining of αβ Sp around a protofilament may form a loop that sustains and equilibrates tension. Sequential association of β and α Sp solves the challenge of constructing multiple loops along the protofilament, and topological connection facilitates their re-association. The wrap-around model minimizes the strain of the actin binding site on β Sp due to tension, redirection, or sliding of intertwined Sp. Pairing Sp balances the opposing forces and provides a mechanism for elastic recovery. The wrap-around junction thus provides mechanical advantages over a point-attachment junction in maintaining the integrity and functionality of the network. Severing α or β Sp may convert a wrapping-around junction to a point-attachment junction. In that case, a “bow up” motion of JC during deformation may disturb or flip the overlaid lipid bilayer, and mark stressed erythrocytes for phagocytosis
Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein
Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively ‘regulating’ connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and other tissues, and this connexin’s role in therapeutic and adverse effects of statins in a range of disease states
Corrigendum to: “Display cloning: functional identification of natural product receptors using cDNA-phage display”
Corrigendum to: “Display cloning: functional identification of natural product receptors using cDNA-phage display” [Chemistry&Biology 6 (1999) 707–716]
Display cloning: functional identification of natural product receptors using cDNA-phage display
AbstractBackground: The identification of cellular targets has traditionally been the starting point for natural product mode of action studies and has led to the understanding of many biological processes. Conventional experimental approaches have depended on cell-based screening and/or affinity chromatography. Although both of these techniques aid in the discovery of protein cellular targets, a method that couples protein identification with gene isolation would be extremely valuable.Results: A procedure for the direct cloning of cellular proteins, based on their affinity for natural products, using cDNA phage display has been developed. The technique is referred to as display cloning because it involves the cloning of proteins displayed on the surface of a bacteriophage particle. The approach has been established by isolating a full-length gene clone of FKBP12 (FK506-binding protein) from a human brain cDNA library using a biotinylated FK506 probe molecule. During the affinity selection, the FKBP12 gene emerged as the dominant library member and was the only sequence identified after the second round of selection.Conclusions: The development of display cloning greatly facilitates the investigation of ligand-receptor interaction biology and natural product mode of action studies. This procedure utilizes heterologous protein display on infectious phage, which allows the amplification and repeated selection of putative sequences, leading to unambiguous target identification. In addition, the direct connection of a functional protein to its gene sequence eliminates the subsequent cloning step required with tissue homogenate or cell lysate affinity methods, allowing direct isolation of an expressible gene sequence
A Hybrid Model for Erythrocyte Membrane: A Single Unit of Protein Network Coupled with Lipid Bilayer
AbstractTo investigate the nanomechanics of the erythrocyte membrane we developed a hybrid model that couples the actin-spectrin network to the lipid bilayer. This model features a Fourier space Brownian dynamics model of the bilayer, a Brownian dynamics model of the actin protofilament, and a modified wormlike-chain model of the spectrin (including a cable-dynamics model to predict the oscillation in tension). This model enables us to predict the nanomechanics of single or multiple units of the protein network, the lipid bilayer, and the effect of their interactions. The present work is focused on the attitude of the actin protofilament at the equilibrium states coupled with the elevations of the lipid bilayer through their primary linkage at the suspension complex in deformations. Two different actin-spectrin junctions are considered at the junctional complex. With a point-attachment junction, large pitch angles and bifurcation of yaw angles are predicted. Thermal fluctuations at bifurcation may lead to mode-switching, which may affect the network and the physiological performance of the membrane. In contrast, with a wrap-around junction, pitch angles remain small, and the occurrence of bifurcation is greatly reduced. These simulations suggest the importance of three-dimensional molecular junctions and the lipid bilayer/protein network coupling on cell membrane mechanics
