554 research outputs found

    Synthetic Spectra for Type Ia Supernovae at Early Epochs

    Full text link
    We present the current status of our construction of synthetic spectra for type Ia supernovae. These properly take into account the effects of NLTE and an adequate representation of line blocking and blanketing. The models are based on a sophisticated atomic database. We show that the synthetic spectrum reproduces the observed spectrum of 'normal' SN-Ia near maximum light from the UV to the near-IR. However, further improvements are necessary before truly quantitative analyses of observed SN-Ia spectra can be performed. In particular, the inner boundary condition has to be fundamentally modified. This is due to the dominance of electron scattering over true absorption processes coupled with the flat density structure in these objectsComment: To appear in "Proceedings of the IAU Colloquium 192 - Supernovae (10 Years of SN1993J)", eds. J.M. Marcaide and K.W. Weile

    The structure of line-driven winds

    Full text link
    Following procedures pioneered by Castor, Abbott & Klein (1975, [CAK]), spherically-symmetric supersonic winds for O stars are computed for matching to plane-parallel moving reversing layers (RL's) from Paper I (Lucy 2007). In contrast to a CAK wind, each of these solutions is singularity-free, thus allowing its mass-loss rate to be fixed by the regularity condition at the sonic point within the RL. Moreover, information propagation in these winds by radiative-acoustic waves is everywhere outwardly-directed, justifying the implicit assumption in Paper I that transonic flows are unaffected by inwardly-directed wave motions.Comment: Accepted by A&A; 7 pages, 1 table, 4 figure

    An explanation for the curious mass loss history of massive stars: from OB stars, through Luminous Blue Variables to Wolf-Rayet stars

    Get PDF
    The stellar winds of massive stars show large changes in mass-loss rates and terminal velocities during their evolution from O-star through the Luminous Blue Variable phase to the Wolf-Rayet phase. The luminosity remains approximately unchanged during these phases. These large changes in wind properties are explained in the context of the radiation driven wind theory, of which we consider four different models. They are due to the evolutionary changes in radius, gravity and surface composition and to the change from optically thin (in continuum) line driven winds to optically thick radiation driven winds.Comment: Accepted for publication in Astronomy and Astrophysics (Letter to the Editor

    Chlorine and Sulfur in Nearby Planetary Nebulae and H II Regions

    Full text link
    We derive the chlorine abundances in a sample of nearby planetary nebulae (PNe) and H II regions that have some of the best available spectra. We use a nearly homogeneous procedure to derive the abundance in each object and find that the Cl/H abundance ratio shows similar values in H II regions and PNe. This supports our previous interpretation that the underabundance we found for oxygen in the H II regions is due to the depletion of their oxygen atoms into organic refractory dust components. For other elements, the bias introduced by ionization correction factors in their derived abundances can be very important, as we illustrate here for sulfur using photoionization models. Even for low-ionization PNe, the derived sulfur abundances can be lower than the real ones by up to 0.3 dex, and the differences found with the abundances derived for H II regions that have similar S/H can reach 0.4 dex.Comment: 2 pages, 1 figure, proceedings of the IAU Symposium No. 283, Planetary Nebulae: an Eye to the Futur

    The Importance of XUV Radiation as a Solution to the P V Mass Loss Rate Discrepancy in O-Stars

    Full text link
    A controversy has developed regarding the stellar wind mass loss rates in O-stars. The current consensus is that these winds may be clumped which implies that all previously derived mass loss rates using density-squared diagnostics are overestimated by a factor of ~ 2. However, arguments based on FUSE observations of the P V resonance line doublet suggest that these rates should be smaller by another order of magnitude, provided that P V is the dominant phosphorous ion among these stars. Although a large mass loss rate reduction would have a range of undesirable consequences, it does provide a straightforward explanation of the unexpected symmetric and un-shifted X-ray emission line profiles observed in high energy resolution spectra. But acceptance of such a large reduction then leads to a contradiction with an important observed X-ray property: the correlation between He-like ion source radii and their equivalent X-ray continuum optical depth unity radii. Here we examine the phosphorous ionization balance since the P V fractional abundance, q(P V), is fundamental to understanding the magnitude of this mass loss reduction. We find that strong "XUV" emission lines in the He II Lyman continuum can significantly reduce q(P V). Furthermore, owing to the unique energy distribution of these XUV lines, there is a negligible impact on the S V fractional abundance (a key component in the FUSE mass loss argument). We conclude that large reductions in O-star mass loss rates are not required, and the X-ray optical depth unity relation remains valid.Comment: Accepted for publication in ApJ Letters, 15 pages, 5 color figure

    Model atmospheres for type Ia supernovae: Basic steps towards realistic synthetic spectra

    Get PDF
    Type Ia supernovae are an important tool for studying the expansion history of the universe. Advancing our yet incomplete understanding of the explosion scenario requires detailed and realistic numerical models in order to interpret and analyze the growing amount of observational data. Here we present first results of our new NLTE model calculations for the expanding atmospheres of type Ia supernovae that employ a detailed and consistent treatment of all important NLTE effects as well as line blocking and blanketing. The comparison of the synthetic spectra resulting from these models with observed data shows that the employed methods represent an important step towards a more realistic description of the atmospheres of supernovae Ia.Comment: 4 pages, 1 figure, to appear in: Proceedings of the 11th Workshop on Nuclear Astrophysics, Ringberg Castle, Germany, 200

    Spectral Evolution Models for the Next Decade

    Full text link
    Spectral evolution models are a widely used tool for determining the stellar content of galaxies. I provide a review of the latest developments in stellar atmosphere and evolution models, with an emphasis on massive stars. In contrast to the situation for low- and intermediate mass stars, the current main challenge for spectral synthesis models are the uncertainties and rapid revision of current stellar evolution models. Spectral libraries, in particular those drawn from theoretical model atmospheres for hot stars, are relatively mature and can complement empirical templates for larger parameter space coverage. I introduce a new ultraviolet spectral library based on theoretical radiation-hydrodynamic atmospheres for hot massive stars. Application of this library to star-forming galaxies at high redshift, i.e., Lyman-break galaxies, will provide new insights into the abundances, initial mass function and ages of stars in the very early universe.Comment: 8 pages, to appear in IAU Symp. 262, Stellar Populations - Planning for the Next Decade, eds. G. Bruzual & S. Charlo

    Numerical Models for the Diffuse Ionized Gas in Galaxies. II. Three-dimensional radiative transfer in inhomogeneous interstellar structures as a tool for analyzing the diffuse ionized gas

    Full text link
    Aims: We systematically explore a plausible subset of the parameter space involving effective temperatures and metallicities of the ionizing stellar sources, the effects of the hardening of their radiation by surrounding leaky HII regions with different escape fractions, as well as different scenarios for the clumpiness of the DIG, and compute the resulting line strength ratios for a number of diagnostic optical emission lines. Methods: For the ionizing fluxes we compute a grid of stellar spectral energy distributions (SEDs) from detailed, fully non-LTE model atmospheres that include the effects of stellar winds and line blocking and blanketing. To calculate the ionization and temperature structure in the HII regions and the diffuse ionized gas we use spherically symmetric photoionization models as well as state-of-the-art three-dimensional (3D) non-LTE radiative transfer simulations, considering hydrogen, helium, and the most abundant metals. Results: We provide quantitative predictions of how the line ratios from HII regions and the DIG vary as a function of metallicity, stellar effective temperature, and escape fraction from the HII region. The range of predicted line ratios reinforces the hypothesis that the DIG is ionized by (filtered) radiation from hot stars; however, comparison of observed and predicted line ratios indicates that the DIG is typically ionized with a softer SED than predicted by the chosen stellar population synthesis model. Even small changes in simulation parameters like the clumping factor can lead to considerable variation in the ionized volume. Both for a more homogeneous gas and a very inhomogeneous gas containing both dense clumps and channels with low gas density, the ionized region in the dilute gas above the galactic plane can cease to be radiation-bounded, allowing the ionizing radiation to leak into the intergalactic medium.Comment: 21 pages, 9 figures, accepted by A&

    Kinematic model inversions of hot star recurrent DAC data - tests against dynamical CIR models

    Get PDF
    The Discrete Absorption Components (DACs) commonly observed in the ultraviolet lines of hot stars have previously been modelled by dynamical simulations of Corotating Interaction Regions (CIRs) in their fine-driven stellar winds. Here we apply the kinematic DAC inversion method of Brown et al. to the hydrodynamical CIR models and test the reliability of the results obtained. We conclude that the inversion method is able to recover valuable information on the velocity structure of the mean wind and to trace movement of velocity plateaux in the hydrodynamical data, though the recovered density profile of the stream is correct only very near to the stellar surface

    The Effect of Magnetic Field Tilt and Divergence on the Mass Flux and Flow Speed in a Line-Driven Stellar Wind

    Full text link
    We carry out an extended analytic study of how the tilt and faster-than-radial expansion from a magnetic field affect the mass flux and flow speed of a line-driven stellar wind. A key motivation is to reconcile results of numerical MHD simulations with previous analyses that had predicted non-spherical expansion would lead to a strong speed enhancement. By including finite-disk correction effects, a dynamically more consistent form for the non-spherical expansion, and a moderate value of the line-driving power index α\alpha, we infer more modest speed enhancements that are in good quantitative agreement with MHD simulations, and also are more consistent with observational results. Our analysis also explains simulation results that show the latitudinal variation of the surface mass flux scales with the square of the cosine of the local tilt angle between the magnetic field and the radial direction. Finally, we present a perturbation analysis of the effects of a finite gas pressure on the wind mass loss rate and flow speed in both spherical and magnetic wind models, showing that these scale with the ratio of the sound speed to surface escape speed, a/vesca/v_{esc}, and are typically 10-20% compared to an idealized, zero-gas-pressure model.Comment: Accepted for publication in ApJ, for the full version of the paper go to: http://www.bartol.udel.edu/~owocki/preprints/btiltdiv-mdotvinf.pd
    corecore