5,349 research outputs found
Relaxation in the 3D ordered CoTAC spin chain by quantum nucleation of 0D domain walls
We have shown that resonant quantum tunnelling of the magnetisation (QTM),
until now observed only in 0D cluster systems (SMMs), occurs in the molecular
Ising spin chain, CoTAC ([(CH_3)_3NH]CoCl_3 - 2H_2O) which orders as a canted
3D-antiferromagnet at T_C=4.15 K. This effect was observed around a resonant
like field value of 1025 Oe. We present here measurements of the relaxation of
the magnetisation as a function of time, from the zero field cooled (ZFC)
antiferromagnet state and from the saturated ferromagnet state. We show that,
at the resonant field, the relaxation from the saturated state occurs in a
complicated process, whereas, surprisingly, in the case of the ZFC state, the
relaxation is exponential.Comment: 4 pages, 5 figures, LT25 proceeding
Intrinsic avalanches and collective phenomena in a Mn(II)-free radical ferrimagnetic chain
Magnetic hysteresis loops below 300 mK on single crystals of the Mn(II) -
nitronyl nitroxide free radical chain (Mn(hfac)_2({\it R})-3MLNN) present
abrupt reversals of the magnetization, or avalanches. We show that, below 200
mK, the avalanches occur at a constant field, independent of the sample and so
propose that this avalanche field is an intrinsic property. We compare this
field to the energy barrier existing in the sample and conclude that the
avalanches are provoked by multiple nucleation of domain-walls along the
chains. The different avalanche field observed in the zero field cooled
magnetization curves suggests that the avalanche mechanisms are related to the
competition between ferromagnetic and antiferromagnetic order in this compound.Comment: 9 pages, 7 fig, to be published in Phys. Rev.
Low-temperature magnetization in geometrically frustrated Tb2Ti2O7
The nature of the low temperature ground state of the pyrochlore compound
Tb2Ti2O7 remains a puzzling issue. Dynamic fluctuations and short-range
correlations persist down to 50 mK, as evidenced by microscopic probes. In
parallel, magnetization measurements show irreversibilities and glassy behavior
below 200 mK. We have performed magnetization and AC susceptibility
measurements on four single crystals down to 57 mK. We did not observe a clear
plateau in the magnetization as a function of field along the [111] direction,
as suggested by the quantum spin ice model. In addition to a freezing around
200 mK, slow dynamics are observed in the AC susceptibility up to 4 K. The
overall frequency dependence cannot be described by a canonical spin-glass
behavior.Comment: 5 pages, 4 figures + Supp. Mat (3 pages, 5 figures
Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam
Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests
DFT Calculations as a Tool to Analyse Quadrupole Splittings of Spin Crossover Fe(II) complexes
Density functional methods have been applied to calculate the quadrupole
splitting of a series of iron(II) spin crossover complexes. Experimental and
calculated values are in reasonable agreement. In one case spin-orbit coupling
is necessary to explain the very small quadrupole splitting value of 0.77 mm/s
at 293 K for a high-spin isomer
Oxidation and protection of fiberglass-epoxy composite masts for photovoltaic arrays in the low Earth orbital environment
Fiberglass-epoxy composites are considered for use as structural members for the mast of the space station solar array panel. The low Earth orbital environment in which space station is to operate is composed mainly of atomic oxygen, which has been shown to cause erosion of many organic materials and some metals. Ground based testing in a plasma asher was performed to determine the extent of degradation of fiberglass-epoxy composites when exposed to a simulated atomic oxygen environment. During exposure, the epoxy at the surface of the composite was oxidized, exposing individual glass fibers which could easily be removed. Several methods of protecting the composite were evaluated in an atomic oxygen environment and with thermal cycling and flexing. The protection techniques evaluated to date include an aluminum braid covering, an indium-tin eutectic and a silicone based paint. The open aluminum braid offered little protection while the CV-1144 coating offered some initial protection against atomic oxygen, but appears to develop cracks which accelerate degradation when flexed. Coatings such as the In-Sn eutectic may provide adequate protection by containing the glass fibers even though mass loss still occurs
The effects of atomic oxygen on the thermal emittance of high temperature radiator surfaces
Radiator surfaces on high temperature space power systems such as SP-100 space nuclear power system must maintain a high emittance level in order to reject waste heat effectively. One of the primary materials under consideration for the radiators is carbon-carbon composite. Since carbon is susceptible to attack by atomic oxygen in the low earth orbital environment, it is important to determine the durability of carbon composites in this environment as well as the effect atomic oxygen has on the thermal emittance of the surface if it is to be considered for use as a radiator. Results indicate that the thermal emittance of carbon-carbon composite (as low as 0.42) can be enhanced by exposure to a directed beam of atomic oxygen to levels above 0.85 at 800 K. This emittance enhancement is due to a change in the surface morphology as a result of oxidation. High aspect ratio cones are formed on the surface which allow more efficient trapping of incident radiation. Erosion of the surface due to oxidation is similar to that for carbon, so that at altitudes less than approximately 600 km, thickness loss of the radiator could be significant (as much as 0.1 cm/year). A protective coating or oxidation barrier forming additive may be needed to prevent atomic oxygen attack after the initial high emittance surface is formed. Textured surfaces can be formed in ground based facilities or possibly in space if emittance is not sensitive to the orientation of the atomic oxygen arrival that forms the texture
Low-Temperature Features of Nano-Particle Dynamics
In view of better characterizing possible quantum effects in the dynamics of
nanometric particles, we measure the effect on the relaxation of a slight
heating cycle. The effect of the field amplitude is studied; its magnitude is
chosen in order to induce the relaxation of large particles (~7nm), even at
very low temperatures (100mK). Below 1K, the results significantly depart from
a simple thermal dynamics scenario.Comment: 1 tex file, 4 PostScript figure
- …
