41,535 research outputs found
Electron correlation effects in cobalt fluorides CoFn
The molecular cobalt fluorides CoF2, CoF3 and CoF4 are studied and compared by employing different basis sets as well as Quantum Information Theory (QIT) to investigate their correlation effects. These prototypical monomers may be systematically extended in size yielding a novel quasi 1‐dimensional, strongly correlated model system consisting of cobalt atoms bridged by oxygen atoms and fluorine termination on both ends. Accurate correlation energies are obtained using Full Configuration Interaction (FCI) and Full Configuration Interaction Quantum Monte Carlo (FCIQMC) calculations and the results are compared to Coupled Cluster and Density Matrix Renormalization Group (DMRG) energies. The analysis indicates the cobalt atom requires a larger number of one‐electron basis functions than fluorine and the use of localized molecular orbitals may facilitate calculations for the extended systems
A Hartree-Fock ab initio band-structure calculation employing Wannier-type orbitals
An ab initio Wannier-function-based approach to electronic ground-state
calculations for crystalline solids is outlined. In the framework of the linear
combination of atomic orbitals method the infinite character of the solid is
rigorously taken into account. The Hartree-Fock ground-state energy, cohesive
energy, lattice constant and bulk modulus are calculated in a fully ab initio
manner as it is demonstrated for sodium chloride, NaCl, using basis sets close
to the Hartree-Fock limit. It is demonstrated that the Hartree-Fock
band-structure can easily be recovered with the current approach and agrees
with the one obtained from a more conventional Bloch-orbital-based calculation.
It is argued that the advantage of the present approach lies in its capability
to include electron correlation effects for crystalline insulators by means of
well-established quantum chemical procedures.Comment: 15 Pages, LaTex, 1 postscript figure (included), to appear in Chem.
Phys. Letters (1998
Effects of Flat Tax Reforms in Western Europe on Income Distribution and Work Incentives
The flat income tax has become increasingly popular recently, yet its implementation is limited to Eastern Europe. We analyse the distributional and efficiency effects of flat tax scenarios for Western European countries. Our simulations show that flat tax rates required to attain revenue neutrality with existing basic allowances improve labour supply incentives. However, they result in higher inequality and polarisation. Flat rates necessary to keep the inequality levels unchanged allow for some scope for flat taxes to increase both equity and efficiency. Our analysis suggests that Mediterranean countries are more likely to benefit from flat taxes.flat tax reform, income distribution, work incentives, microsimulation
Simple Online and Realtime Tracking with a Deep Association Metric
Simple Online and Realtime Tracking (SORT) is a pragmatic approach to
multiple object tracking with a focus on simple, effective algorithms. In this
paper, we integrate appearance information to improve the performance of SORT.
Due to this extension we are able to track objects through longer periods of
occlusions, effectively reducing the number of identity switches. In spirit of
the original framework we place much of the computational complexity into an
offline pre-training stage where we learn a deep association metric on a
large-scale person re-identification dataset. During online application, we
establish measurement-to-track associations using nearest neighbor queries in
visual appearance space. Experimental evaluation shows that our extensions
reduce the number of identity switches by 45%, achieving overall competitive
performance at high frame rates.Comment: 5 pages, 1 figur
Ab-Initio Calculation of the Metal-Insulator Transition in Sodium rings and chains and in mixed Sodium-Lithium systems
We study how the Mott metal-insulator transition (MIT) is influenced when we
deal with electrons with different angular momenta. For lithium we found an
essential effect when we include -orbitals in the description of the Hilbert
space. We apply quantum-chemical methods to sodium rings and chains in order to
investigate the analogue of a MIT, and how it is influenced by periodic and
open boundaries. By changing the interatomic distance we analyse the character
of the many-body wavefunction and the charge gap. In the second part we mimic a
behaviour found in the ionic Hubbard model, where a transition from a band to a
Mott insulator occurs. For that purpose we perform calculations for mixed
sodium-lithium rings. In addition, we examine the question of bond alternation
for the pure sodium system and the mixed sodium-lithium system, in order to
determine under which conditions a Peierls distortion occurs.Comment: 8 pages, 7 figures, accepted Eur. J. Phys.
- …
