2,040 research outputs found

    Thermally assisted ordering in Mott insulators

    Full text link
    Ginzburg-Landau theory describes phase transitions as the competition between energy and entropy: The ordered phase has lower energy, while the disordered phase has larger entropy. When heating the system, ordering is reduced entropically until it vanishes at the critical temperature. This established picture implicitly assumes that the energy difference between ordered and disordered phase does not change with temperature. We show that for the Mott insulator KCuF3 this assumption is strongly violated: thermal expansion energetically stabilizes the orbitally-ordered phase to such and extent that no phase transition is observed. This new mechanism explains not only the absence of a phase transition in KCuF3 but even suggests the possibility of an inverted transition in closed-shell systems, where the ordered phase emerges only at high temperatures.Comment: 5 pages, 5 figure

    Terrain modeling and path selection by an autonomous Martian exploratory vehicle

    Get PDF
    Computerized simulation of terrain sensing and modeling for unmanned surface vehicle on Mars surfac

    An optimal system design process for a Mars roving vehicle

    Get PDF
    The problem of determining the optimal design for a Mars roving vehicle is considered. A system model is generated by consideration of the physical constraints on the design parameters and the requirement that the system be deliverable to the Mars surface. An expression which evaluates system performance relative to mission goals as a function of the design parameters only is developed. The use of nonlinear programming techniques to optimize the design is proposed and an example considering only two of the vehicle subsystems is formulated and solved

    Mechanism of structural phase transitions in KCrF3

    Get PDF
    We study the origin of the cubic to tetragonal and tetragonal to monoclinic structural transitions in KCrF3, and the associated change in orbital order, paying particular attention to the relevance of super-exchange in both phases. We show that super-exchange is not the main mechanism driving these transitions. Specifically, it is not strong enough to be responsible for the high-temperature cubic to tetragonal transition and does not yield the type of orbital order observed in the monoclinic phase. The energy difference between the tetragonal and the monoclinic structure is tiny, and most likely results from the interplay between volume, covalency, and localization effects. The transition is rather driven by Slater exchange than super-exchange. Nevertheless, once the monoclinic distortions are present, super-exchange helps in stabilizing the low symmetry structure. The orbital order we obtain for this monoclinic phase is consistent with the magnetic transition at 80 K.Comment: 8 pages, 6 figure

    Half-filled stripes in the t-t'-U Hubbard model

    Full text link
    Using a self-consistent Hartree-Fock approximation we investigate the relative stability of various stripe phases in the extended tt-tt'-UU Hubbard model. One finds that a negative ratio of next- to nearest-neighbor hopping t/t<0t'/t<0 expells holes from antiferromagnetic domains and reinforces the stripe order. Therefore the half-filled stripes not only accommodate holes but also redistribute them so that the kinetic energy is gained, and these stripes take over in the regime of t/t0.3t'/t\simeq -0.3 appropriate for YBa2_2Cu3_3O6+δ_{6+\delta}.Comment: Accepted for publication in Phys. Stat. So

    Orbital fluctuations in the different phases of LaVO3 and YVO3

    Get PDF
    We investigate the importance of quantum orbital fluctuations in the orthorhombic and monoclinic phases of the Mott insulators LaVO3 and YVO3. First, we construct ab-initio material-specific t2g Hubbard models. Then, by using dynamical mean-field theory, we calculate the spectral matrix as a function of temperature. Our Hubbard bands and Mott gaps are in very good agreement with spectroscopy. We show that in orthorhombic LaVO3, quantum orbital fluctuations are strong and that they are suppressed only in the monoclinic 140 K phase. In YVO3 the suppression happens already at 300 K. We show that Jahn-Teller and GdFeO3-type distortions are both crucial in determining the type of orbital and magnetic order in the low temperature phases.Comment: 4 pages, 3 figures, final version. To appear in PR

    Multiplet effects in orbital and spin ordering phenomena: A hybridization-expansion quantum impurity solver study

    Get PDF
    Orbital and spin ordering phenomena in strongly correlated systems are commonly studied using the local-density approximation + dynamical mean-field theory approach. Typically, however, such simulations are restricted to simplified models (density-density Coulomb interactions, high symmetry couplings and few-band models). In this work we implement an efficient general hybridization-expansion continuous-time quantum Monte Carlo impurity solver (Krylov approach) which allows us to investigate orbital and spin ordering in a more realistic setting, including interactions that are often neglected (e.g., spin-flip and pair-hopping terms), enlarged basis sets (full d versus eg), low-symmetry distortions, and reaching the very low-temperature (experimental) regime. We use this solver to study ordering phenomena in a selection of exemplary low-symmetry transition-metal oxides: LaMnO3 and rare-earth manganites as well as the perovskites CaVO3 and YTiO3. We show that spin-flip and pair hopping terms do not affect the Kugel-Khomskii orbital-order melting transition in rare-earth manganites, or the suppression of orbital fluctuations driven by crystal field and Coulomb repulsion. For the Mott insulator YTiO3 we find a ferromagnetic transition temperature 50 K, in remarkably good agreement with experiments. For LaMnO3 we show that the classical t2g-spin approximation, commonly adopted for studying manganites, yields indeed an occupied eg orbital in very good agreement with that obtained for the full d 5-orbital Hubbard model, while the spin-spin e_g-t_{2g} correlation function calculated from the full d model is 0.74, very close to the value expected for aligned eg and t2g spins; the eg spectral function matrix is also well reproduced. Finally, we show that the t2g screening reduces the eg-eg Coulomb repulsion by about 10%Comment: 9 pages, 5 figure
    corecore