385 research outputs found
An optimal system design process for a Mars roving vehicle
The problem of determining the optimal design for a Mars roving vehicle is considered. A system model is generated by consideration of the physical constraints on the design parameters and the requirement that the system be deliverable to the Mars surface. An expression which evaluates system performance relative to mission goals as a function of the design parameters only is developed. The use of nonlinear programming techniques to optimize the design is proposed and an example considering only two of the vehicle subsystems is formulated and solved
Mott transition and suppression of orbital fluctuations in orthorhombic 3 perovskites
Using Wannier-functions, a low-energy Hamiltonian is derived for
orthorhombic transition-metal oxides. Electronic correlations are
treated with a new implementation of dynamical mean-field theory for non-cubic
systems. Good agreement with photoemission data is obtained. The interplay of
correlation effects and cation covalency (GdFeO-type distortions) is
found to suppress orbital fluctuations in LaTiO and even more in
YTiO, and to favor the transition to the insulating state.Comment: 4 pages, 3 figures; revised manuscrip
Nature of the Mott transition in Ca2RuO4
We study the origin of the temperature-induced Mott transition in Ca2RuO4. As
a method we use the local-density approximation+dynamical mean-field theory. We
show the following. (i) The Mott transition is driven by the change in
structure from long to short c-axis layered perovskite (L-Pbca to S-Pbca); it
occurs together with orbital order, which follows, rather than produces, the
structural transition. (ii) In the metallic L-Pbca phase the orbital
polarization is ~0. (iii) In the insulating S-Pbca phase the lower energy
orbital, ~xy, is full. (iv) The spin-flip and pair-hopping Coulomb terms reduce
the effective masses in the metallic phase. Our results indicate that a similar
scenario applies to Ca_{2-x}Sr_xRuO_4 (x<0.2). In the metallic x< 0.5
structures electrons are progressively transferred to the xz/yz bands with
increasing x, however we find no orbital-selective Mott transition down to ~300
K.Comment: 4 pages, 3 figures; published versio
Many-body models for molecular nanomagnets
We present a flexible and effective ab-initio scheme to build many-body
models for molecular nanomagnets, and to calculate magnetic exchange couplings
and zero-field splittings. It is based on using localized Foster-Boys orbitals
as one-electron basis. We apply this scheme to three paradigmatic systems, the
antiferromagnetic rings Cr8 and Cr7Ni and the single molecule magnet Fe4. In
all cases we identify the essential magnetic interactions and find excellent
agreement with experiments.Comment: 5 pages, 3 figure
Role of covalency in the ground state properties of perovskite ruthenates: A first principle study using local spin density approximations
We investigate the electronic structure of SrRuO3 and CaRuO3 using full
potential linearized augmented plane wave method within the local spin density
approximations. The ferromagnetic ground state in SrRuO3 could exactly be
described in these calculations and the calculated spin magnetic moment is
found to be close to the experimentally observed values. Interestingly, the
spin polarized calculations for CaRuO3 exhibit large spin moment as observed in
the experiments but the magnetic ground state has higher energy than that in
the non-magnetic solution. Various calculations for different structural
configurations indicate that Ca-O covalency plays the key role in determining
the electronic structure and thereby the magnetic ground state in this system.Comment: 8 figure
Electronic Structure Calculations with LDA+DMFT
The LDA+DMFT method is a very powerful tool for gaining insight into the
physics of strongly correlated materials. It combines traditional ab-initio
density-functional techniques with the dynamical mean-field theory. The core
aspects of the method are (i) building material-specific Hubbard-like many-body
models and (ii) solving them in the dynamical mean-field approximation. Step
(i) requires the construction of a localized one-electron basis, typically a
set of Wannier functions. It also involves a number of approximations, such as
the choice of the degrees of freedom for which many-body effects are explicitly
taken into account, the scheme to account for screening effects, or the form of
the double-counting correction. Step (ii) requires the dynamical mean-field
solution of multi-orbital generalized Hubbard models. Here central is the
quantum-impurity solver, which is also the computationally most demanding part
of the full LDA+DMFT approach. In this chapter I will introduce the core
aspects of the LDA+DMFT method and present a prototypical application.Comment: 21 pages, 7 figures. Chapter of "Many-Electron Approaches in Physics,
Chemistry and Mathematics: A Multidisciplinary View", eds. V. Bach and L.
Delle Site, Springer 201
On the mechanism for orbital-ordering in KCuF3
The Mott insulating perovskite KCuF3 is considered the archetype of an
orbitally-ordered system. By using the LDA+dynamical mean-field theory (DMFT)
method, we investigate the mechanism for orbital-ordering (OO) in this
material. We show that the purely electronic Kugel-Khomskii super-exchange
mechanism (KK) alone leads to a remarkably large transition temperature of T_KK
about 350 K. However, orbital-order is experimentally believed to persist to at
least 800 K. Thus Jahn-Teller distortions are essential for stabilizing
orbital-order at such high temperatures.Comment: 4 pages, 5 figure
Dynamical mean-field theory of indirect magnetic exchange
To analyze the physical properties arising from indirect magnetic exchange
between several magnetic adatoms and between complex magnetic nanostructures on
metallic surfaces, the real-space extension of dynamical mean-field theory
(R-DMFT) appears attractive as it can be applied to systems of almost arbitrary
geometry and complexity. While R-DMFT describes the Kondo effect of a single
adatom exactly, indirect magnetic (RKKY) exchange is taken into account on an
approximate level only. Here, we consider a simplified model system consisting
of two magnetic Hubbard sites ("adatoms") hybridizing with a non-interacting
tight-binding chain ("substrate surface"). This two-impurity Anderson model
incorporates the competition between the Kondo effect and indirect exchange but
is amenable to an exact numerical solution via the density-matrix
renormalization group (DMRG). The particle-hole symmetric model at half-filling
and zero temperature is used to benchmark R-DMFT results for the magnetic
coupling between the two adatoms and for the magnetic properties induced in the
substrate. In particular, the dependence of the local adatom and the nonlocal
adatom-adatom static susceptibilities as well as the magnetic response of the
substrate on the distance between the adatoms and on the strength of their
coupling with the substrate is studied. We find both, excellent agreement with
the DMRG data even on subtle details of the competition between RKKY exchange
and the Kondo effect but also complete failure of the R-DMFT, depending on the
parameter regime considered. R-DMFT calculations are performed using the
Lanczos method as impurity solver. With the real-space extension of the
two-site DMFT, we also benchmark a simplified R-DMFT variant.Comment: 14 pages, 8 figure
Nod2 Deficiency in mice is Associated with Microbiota Variation Favouring the Expansion of mucosal CD4+ LAP+ Regulatory Cells
Nucleotide-binding Oligomerization Domain-2 (NOD2) mutations are associated with an increased risk to develop Crohn's Disease. In previous studies, we have shown that Nod2-/- mice manifest increased proportion of Lamina Propria (LP) CD4+ LAP+ Foxp3- regulatory cells, when compared with Nod2+/+ mice, while CD4+ Foxp3 + regulatory cells were not affected. Here, we investigated the Nod2 gut microbiota, by 16S rRNA pyrosequencing, at steady state and after TNBS-colitis induction in mice reared separately or in cohousing, correlating the microbial profiles with LP regulatory T cells proportion and tissue cytokines content. We found that enrichment of Rikenella and Alistipes (Rikenellaceae) in Nod2-/- mice at 8 weeks of age reared separately was associated with increased proportion of CD4+ LAP+ Foxp3- cells and less severe TNBS-colitis. In co-housed mice the acquisition of Rickenellaceae by Nod2+/+ mice was associated with increased CD4+ LAP+ Foxp3- proportion and less severe colitis. Severe colitis was associated with enrichment of gram-negative pathobionts (Escherichia and Enterococcus), while less severe colitis with protective bacteria (Barnesiella, Odoribacter and Clostridium IV). Environmental factors acting on genetic background with different outcomes according to their impact on microbiota, predispose in different ways to inflammation. These results open a new scenario for therapeutic attempt to re-establish eubiosis in Inflammatory Bowel Disease patients with NOD2 polymorphisms
Measuring the gap in ARPES experiments
Angle-resolved photoemission spectroscopy (ARPES) is considered as the only
experimental tool from which the momentum distribution of both the
superconducting and pseudo-gap can be quantitatively derived. The binding
energy of the leading edge of the photoemission spectrum, usually called the
leading edge gap (LEG), is the model-independent quantity which can be measured
in the modern ARPES experiments with the very high accuracy--better than 1 meV.
This, however, may be useless as long as the relation between the LEG and the
real gap is unknown. We present a systematic study of the LEG as a function of
a number of physical and experimental parameters. The absolute gap values which
have been derived from the numerical simulation prove, for example that the
nodal direction in the underdoped Bi-2212 in superconducting state is really
the node--the gap is zero. The other consequences of the simulations are
discussed.Comment: revtex4, 9 pages, 6 figure
- …
