42 research outputs found
Geometric properties of nucleic acids with potential for autobuilding
Algorithms and geometrical properties are described for the automated building of nucleic acids in experimental electron density
Experimental phasing with SHELXC/D/E: combining chain tracing with density modification
Experimental phasing with SHELXC/D/E has been enhanced by the incorporation of main-chain tracing into the iterative density modification; this also provides a simple and effective way of exploiting noncrystallographic symmetry
Rapid chain tracing of polypeptide backbones in electron-density maps
A method for rapid chain tracing of polypeptide backbones at moderate resolution is presented
Rapid model building of β-sheets in electron-density maps
A method for rapid model building of β-sheets at moderate resolution is presented
Revisiting the planarity of nucleic acid bases: Pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion
We describe a novel, fundamental property of nucleobase structure, namely, pyramidilization at the N1/9 sites of purine and pyrimidine bases. Through a combined analyses of ultra-high-resolution X-ray structures of both oligonucleotides extracted from the Nucleic Acid Database and isolated nucleotides and nucleosides from the Cambridge Structural Database, together with a series of quantum chemical calculations, molecular dynamics (MD) simulations, and published solution nuclear magnetic resonance (NMR) data, we show that pyramidilization at the glycosidic nitrogen is an intrinsic property. This property is common to isolated nucleosides and nucleotides as well as oligonucleotides—it is also common to both RNA and DNA. Our analysis suggests that pyramidilization at N1/9 sites depends in a systematic way on the local structure of the nucleoside. Of note, the pyramidilization undergoes stereo-inversion upon reorientation of the glycosidic bond. The extent of the pyramidilization is further modulated by the conformation of the sugar ring. The observed pyramidilization is more pronounced for purine bases, while for pyrimidines it is negligible. We discuss how the assumption of nucleic acid base planarity can lead to systematic errors in determining the conformation of nucleotides from experimental data and from unconstrained MD simulations
ChemInform Abstract: Struktur und Eigenschaften des N-Salicylidenglycinato-thioharnstoff-Kupfer(II)- Komplexes (monoklin, Raumgruppe C2/c, Z=8, magnetisches Moment, ESR)
Application of constrained real-space refinement of flexible molecular fragments to automatic model building of RNA structures
New methods have been developed for locating phosphate groups and nucleic acid bases in the electron density of RNA structures. These methods utilize a constrained real-space refinement of molecular fragments and a phased rotation–conformation–translation function. Real-space refinement has also contributed to the improvement of the bone/base method of RNA model building and to redesigning the method of building double helices in nucleic acid structures. This improvement is reflected in the increased accuracy of the model building and the ability to better distinguish between correct and false solutions. A program,RSR, was created, and the programsNUT,HELandDHLwere upgraded and organized into a program system, which is CCP4 oriented. Source codes will also be released.</jats:p
