203 research outputs found
Analysis of the olive fruit fly Bactrocera oleae transcriptome and phylogenetic classification of the major detoxification gene families
he olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved. The study of detoxification mechanisms, which allow the olive fruit fly to defend against insecticides, and/or phytotoxins possibly present in the mesocarp, has been hampered by the lack of genomic information in this species. In the NCBI database less than 1,000 nucleotide sequences have been deposited, with less than 10 detoxification gene homologues in total. We used 454 pyrosequencing to produce, for the first time, a large transcriptome dataset for B. oleae. A total of 482,790 reads were assembled into 14,204 contigs. More than 60% of those contigs (8,630) were larger than 500 base pairs, and almost half of them matched with genes of the order of the Diptera. Analysis of the Gene Ontology (GO) distribution of unique contigs, suggests that, compared to other insects, the assembly is broadly representative for the B. oleae transcriptome. Furthermore, the transcriptome was found to contain 55 P450, 43 GST-, 15 CCE- and 18 ABC transporter-genes. Several of those detoxification genes, may putatively be involved in the ability of the olive fruit fly to deal with xenobiotics, such as plant phytotoxins and insecticides. In summary, our study has generated new data and genomic resources, which will substantially facilitate molecular studies in B. oleae, including elucidation of detoxification mechanisms of xenobiotic, as well as other important aspects of olive fruit fly biology
Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding
The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B. oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism
Substrate specificity and promiscuity of horizontally transferred UDP-glycosyltransferases in the generalist herbivore Tetranychus urticae
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the addition of UDP-sugars to small hydrophobic molecules, turning them into more water-soluble metabolites. While their role in detoxification is well documented for vertebrates, arthropod UGTs have only recently been linked to the detoxification and sequestration of plant toxins and insecticides. The two-spotted spider mite Tetranychus urticae is a generalist herbivore notorious for rapidly developing resistance to insecticides and acaricides. We identified a set of eight UGT genes that were overexpressed in mites upon long-term acclimation or adaptation to a new host plant and/or in mite strains highly resistant to acaricides. Functional expression revealed that they were all catalytically active and that the majority preferred UDP-glucose as activated donor for glycosylation of model substrates. A high-throughput substrate screening of both plant secondary metabolites and pesticides revealed patterns of both substrate specificity and promiscuity. We further selected nine enzyme-substrate combinations for more comprehensive analysis and determined steady-state kinetic parameters. Among others, plant metabolites such as capsaicin and several flavonoids were shown to be glycosylated. The acaricide abamectin was also glycosylated by two UGTs and one of these was also overexpressed in an abamectin resistant strain. Our study corroborates the potential role of T. urticae UGTs in detoxification of both synthetic and natural xenobiotic compounds and paves the way for rapid substrate screening of arthropod UGTs
DOA ESTIMATION WITH HISTOGRAM ANALYSIS OF SPATIALLY CONSTRAINED ACTIVE INTENSITY VECTORS
The active intensity vector (AIV) is a common descriptor of the sound field. In microphone array processing, AIV is commonly approximated with beamforming operations and uti- lized as a direction of arrival (DOA) estimator. However, in its original form, it provides inaccurate estimates in sound field conditions where coherent sound sources are simultane- ously active. In this work we utilize a higher order intensity- based DOA estimator on spatially-constrained regions (SCR) to overcome such limitations. We then apply 1-dimensional (1D) histogram processing on the noisy estimates for mul- tiple DOA estimation. The performance of the estimator is shown with a 7-channel microphone array, fitted on a rigid mobile-like device, in reverberant conditions and under dif- ferent signal-to-noise ratios
Real-time multiple sound source localization using a circular microphone array based on single-source confidence measures
International audienceWe propose a novel real-time adaptative localization approach for multiple sources using a circular array, in order to suppress the localization ambiguities faced with linear arrays, and assuming a weak sound source sparsity which is derived from blind source separation methods. Our proposed method performs very well both in simulations and in real conditions at 50% real-time
Source counting in real-time sound source localization using a circular microphone array
International audienceRecently, we proposed an approach inspired by Sparse Component Analysis for real-time localization of multiple sound sources using a circular microphone array. The method was based on identifying time-frequency zones where only one source is active, reducing the problem to single-source localization for these zones. A histogram of estimated Directions of Arrival (DOAs) was formed and then processed to obtain improved DOAestimates, assuming that the number of sources was known. In this paper, we extend our previous work by proposing three different methods for counting the number of sources by looking for prominent peaks in the derived histogram based on: (a) performing a peak search, (b) processing an LPC-smoothed version of the histogram, (c) employing a matching pursuit-based approach. The third approach is shown to perform very accurately in simulated reverberant conditions and additive noise, and its computational requirements are very small
Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera
The cotton bollworm, Helicoverpa armigera (Hübner) is one of the most serious insect pest species to evolve resistance against many insecticides from different chemical classes. This species has evolved resistance to the pyrethroid insecticides across its native range and is becoming a truly global pest after establishing in South America and having been recently recorded in North America. A chimeric cytochrome P450 gene, CYP337B3, has been identified as a resistance mechanism for resistance to fenvalerate and cypermethrin. Here we show that this resistance mechanism is common around the world with at least eight different alleles. It is present in South America and has probably introgressed into its closely related native sibling species, Helicoverpa zea. The different alleles of CYP337B3 are likely to have arisen independently in different geographic locations from selection on existing diversity. The alleles found in Brazil are those most commonly found in Asia, suggesting a potential origin for the incursion of H. armigera into the Americas
Ηλεκτρολυτική παραγωγή υδρογόνου με ταυτόχρονη ανοδική οξείδωση σακχάρων σε ηλεκτρόδια οξειδίων μετάλλων
On the Deque and Rique Numbers of Complete and Complete Bipartite Graphs
Several types of linear layouts of graphs are obtained by leveraging known
data structures; the most notable representatives are the stack and the queue
layouts. In this content, given a data structure, one seeks to specify an order
of the vertices of the graph and a partition of its edges into pages, such that
the endpoints of the edges assigned to each page can be processed by the given
data structure in the underlying order. In this paper, we study deque and rique
layouts of graphs obtained by leveraging the double-ended queue and the
restricted-input double-ended queue (or deque and rique, for short),
respectively. Hence, they generalize both the stack and the queue layouts. We
focus on complete and complete bipartite graphs and present bounds on their
deque- and rique-numbers, that is, on the minimum number of pages needed by any
of these two types of linear layouts
- …
