122 research outputs found
Spin Gauge Theory of Gravity in Clifford Space
A theory in which 16-dimensional curved Clifford space (C-space) provides a
realization of Kaluza-Klein theory is investigated. No extra dimensions of
spacetime are needed: "extra dimensions" are in C-space. We explore the spin
gauge theory in C-space and show that the generalized spin connection contains
the usual 4-dimensional gravity and Yang-Mills fields of the U(1)xSU(2)xSU(3)
gauge group. The representation space for the latter group is provided by
16-component generalized spinors composed of four usual 4-component spinors,
defined geometrically as the members of four independent minimal left ideals of
Clifford algebra.Comment: 9 pages, talk presented at the QG05 conference, 12-16 September 2005,
Cala Gonone, Ital
MULTI-DIMENSIONAL COSMOLOGY AND DSR–GUP
A multi-dimensional cosmology with FRW type metric having four-dimensional spacetime and d-dimensional Ricci-flat internal space is considered with a higher-dimensional cosmological constant. The classical cosmology in commutative and Doubly Special Relativity–Generalized Uncertainty Principle (DSR–GUP) contexts is studied and the corresponding exact solutions for negative and positive cosmological constants are obtained. In the positive cosmological constant case, it is shown that unlike the commutative as well as GUP cases, in DSR–GUP case both scale factors of internal and external spaces after accelerating phase will inevitably experience decelerating phase leading simultaneously to a big crunch. This demarcation from GUP originates from the difference between the GUP and DSR–GUP algebras. The important result is that unlike GUP which results in eternal acceleration, DSR–GUP at first generates acceleration but prevents the eternal acceleration at late-times and turns it into deceleration
- …
