32 research outputs found
KSHV/HHV-8 and HIV infection in Kaposi's sarcoma development
Kaposi's sarcoma (KS) is a highly and abnormally vascularized tumor-like lesion affecting the skin, lymphnodes and viscera, which develops from early inflammatory stages of patch/plaque to late, nodular tumors composed predominant of spindle cells (SC). These SC are infected with the Kaposi's sarcoma-associated herpesvirus or human herpesvirus-8 (KSHV/HHV-8). KS is promoted during HIV infection by various angiogenic and pro-inflammatory factors including HIV-Tat. The latency associated nuclear antigen type 1 (LANA-1) protein is well expressed in SC, highly immunogenic and considered important in the generation and maintenance of HHV-8 associated malignancies. Various studies favour an endothelial origin of the KS SC, expressing "mixed" lymphatic and vascular endothelial cell markers, possibly representing hybrid phenotypes of endothelial cells (EC). A significant number of SC during KS development are apparently not HHV8 infected, which heterogeneity in viral permissiveness may indicate that non-infected SC may continuously be recruited in to the lesion from progenitor cells and locally triggered to develop permissiveness to HHV8 infection. In the present study various aspects of KS pathogenesis are discussed, focusing on the histopathological as well as cytogenetic and molecular genetic changes in KS
Preventing HHV-8 transmission and Kaposi’s sarcoma (KS) risk prediction and prognostication in resource-poor countries
STUDY ON MORPHO-PHYSICAL FLORAL CHARACTERS OF MANGO (MANGIFERA INDICA) VARIETIES IN SARLAHI, NEPAL
Floral characteristics of 27 mango varieties were studied during February-May, 2024. Distinct variations were found among the studied varieties. Significant variation were observed in term of number of male flower per inflorescence, number of hermaphrodite flower per inflorescence, length of inflorescence and width of inflorescence ranging from 57 to 1737, 7 to 461, 19 cm to 40.6 cm, 6.4 cm to 25.7 cm respectively. The result disclosed that in all varieties flowers were of pentamerous type and inflorescence position were found terminal. The number of male flower per inflorescence were highest in Bombay (1737). In term of number of hermaphrodite flowers per inflorescence, chausa has highest number (461). In overall, male flower per inflorescence were more than hermaphrodite flower per inflorescence across all varieties except Amrapali, Jarda and Chausa. Ratna has the longest inflorescence (40.6 cm) and widest inflorescence (25.7 cm). From the study, it can be inferred that chausa will have more fruit set as it has more hermaphrodite flowers but seeing the overall floral character Ratna is more superior as it has longest and widest inflorescence and second highest in term of number of hermaphrodite flower among the studied varieties. The findings of the study will be beneficial for breeding purposes while developing new varieties of superior quality
Viral Oncogene–Induced DNA Damage Response Is Activated in Kaposi Sarcoma Tumorigenesis
Kaposi sarcoma is a tumor consisting of Kaposi sarcoma herpesvirus (KSHV)–infected tumor cells that express endothelial cell (EC) markers and viral genes like v-cyclin, vFLIP, and LANA. Despite a strong link between KSHV infection and certain neoplasms, de novo virus infection of human primary cells does not readily lead to cellular transformation. We have studied the consequences of expression of v-cyclin in primary and immortalized human dermal microvascular ECs. We show that v-cyclin, which is a homolog of cellular D-type cyclins, induces replicative stress in ECs, which leads to senescence and activation of the DNA damage response. We find that antiproliferative checkpoints are activated upon KSHV infection of ECs, and in early-stage but not late-stage lesions of clinical Kaposi sarcoma specimens. These are some of the first results suggesting that DNA damage checkpoint response also functions as an anticancer barrier in virally induced cancers
Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk outcome pairs, and new data on risk exposure levels and risk outcome associations.
Methods: We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
Findings: In 2017,34.1 million (95% uncertainty interval [UI] 33.3-35.0) deaths and 121 billion (144-1.28) DALYs were attributable to GBD risk factors. Globally, 61.0% (59.6-62.4) of deaths and 48.3% (46.3-50.2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10.4 million (9.39-11.5) deaths and 218 million (198-237) DALYs, followed by smoking (7.10 million [6.83-7.37] deaths and 182 million [173-193] DALYs), high fasting plasma glucose (6.53 million [5.23-8.23] deaths and 171 million [144-201] DALYs), high body-mass index (BMI; 4.72 million [2.99-6.70] deaths and 148 million [98.6-202] DALYs), and short gestation for birthweight (1.43 million [1.36-1.51] deaths and 139 million [131-147] DALYs). In total, risk-attributable DALYs declined by 4.9% (3.3-6.5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23.5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18.6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low.
Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017.
BACKGROUND: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of 'leaving no one behind', it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990-2017, projected indicators to 2030, and analysed global attainment. METHODS: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0-100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator
Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
BackgroundThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations.MethodsWe used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.FindingsIn 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low.InterpretationBy quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2\ub75th percentile and 100 as the 97\ub75th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59\ub74 (IQR 35\ub74–67\ub73), ranging from a low of 11\ub76 (95% uncertainty interval 9\ub76–14\ub70) to a high of 84\ub79 (83\ub71–86\ub77). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030
AIDS and endemic Kaposi's sarcoma development : Comparison by histopathology, virology (HHV8/KSHV) and cytogenetics
Kaposi’s sarcoma (KS) is a highly and abnormally vascularized tumor-like
lesion with spindle cells (SC) affecting the skin, lymphnodes and viscera
which is found in four different clinico-epidemiological forms as Classic
KS (CKS), Iatrogenic KS (IKS), Endemic KS (EKS) and AIDS-associated KS
(AKS). All KS forms develop from early stages of patch/plaque to late,
nodular tumors and are associated with Kaposi's sarcomaassociated
herpesvirus or human herpesvirus-8 (KSHV/ HHV-8). HHV-8 is also
associated with primary effusion lymphoma (PEL) and multicentric
castleman's disease (MCD). Various studies favour an endothelial origin
(CD34+) of the KS SC but whether of vascular (VEC) or lymphatic
endothelial cell (LEC) origin has not been settled. The HHV-8
latency-associated nuclear antigen type 1 (LANA-1) protein is the most
frequently expressed viral antigen in infected cells. KS is promoted by
HIV infection mainly by the angiogenic and proinflammatory effects of
HIV-Tat. Whether KS represents a predominantly monoclonal neoplastic cell
proliferation or a hyperplastic, reactive polyclonal process is still
controversial. Reports on cytogenetic and molecular genetic changes in KS
are few indicating that initially KS may develop as a reactive polyclonal
cell proliferation associated with chromosome instability, followed by
clonal chromosome changes in later stages.
In the present KS histopathological studies (paper I & V) by triple
antibody immunofluorescence we observed that: (a) the frequency of
LANA+/CD34+ cells increased from early patch to late KS nodular lesions;
(b) 30- 40% of the CD34+ SC were LANA- in both early and late KS,
suggesting a continuous recruitment of noninfected endothelial cell into
the KS lesion; (c) LANA+/CD34- cells were more frequent in early as
compared to late KS and most of them expressed LEC markers such as LYVE-1
and D2-40, suggesting that the resident LECs represent an early target of
primary HHV-8 infection; (d) LANA+/CD34-/LYVE-1+ cells decreased from
early (25%) to late (4%) KS suggesting a phenotype switch from LEC to
VEC; (e) the frequency of proliferating cells (Ki67+) was higher in early
as compared to late KS stages and no significant difference in cell
proliferation was observed between nodular AKS and EKS, suggesting that
the growth of the usually more aggressive AKS tumors may reflect a higher
rate of SC progenitor recruitment as compared to the slower growing EKS
lesions, consistent with the observed increase in non-proliferative SC
during KS (AKS) evolution to nodular stage; (f) infiltrating lymphocytes
were LANA negative, whereas some CD68+ monocyte-macrophase appeared to be
LANA+.
To validate our results from LANA immunostaining, we established and
optimized a semi-quantitative PCR assay for HHV-8 detection in
formalin-fixed paraffin-embedded KS biopsies (paper III) and two
different protocols for DNA extraction were compared namely the Chelex
100 and Qia-gene kit method. Our result indicate a better performance for
Chelex-extracted DNA in paraffin embedded archival biopsies. In late,
nodular stage of both AKS and EKS the virus load per unit tissue actin
(HHV-8/actin) is higher than in early stages (patch/plaque), which
corroborates our findings from double immunostaining for LANA and CD34 of
the same cases. Thus these PCR results by serial dilutions of HHV-8 DNA
show a correlation between virus load and progressive stages of KS
development i.e. the increase in LANA+ SC and does not indicate an
increase in viral content of individual tumor cells.
With quantitative real time PCR on sera (paper II), we found higher HHV8
DNA load in AKS compared to EKS, patch compared to nodular KS and males
compared to females as well as a significantly higher serum viral DNA
load in KS compared to non-KS patients’ sera.
AKS patient sera studied by ELISA for HIV-Tat antibodies showed that
patients with high HHV8-DNA level had no or low levels of anti-Tat
antibodies while patients with very low HHV8-DNA levels had several fold
higher anti-Tat IgG titers. Analysis of these KS sera for epitope
specificity showed reactivity to various Tat epitopes but not to the
transcriptional (functional) epitopes 46-60 (TAR-binding region). To
determine cytogenetic changes during the development of KS as well as
possible differences between AKS and EKS we studied 27 KS (10 nodular
AKS, 8 patch AKS, 8 nodular EKS and 1 patch EKS) cases by laser
microdissection, global amplification of DNA and comparative genomic
hybridization (paper IV). Deletion of Chromosome Y was detected in 20 of
23 male KS and was the only chromosomal deletion observed in early
(patch) KS biopsies. Late AKS and EKS apart from random aberrations also
showed recurrent chromosomal deletions of chromosome 16, 17, Y and a gain
of chromosome 21. The deletion of chromosome 16 and Y was confirmed by
interphase FISH on paraffin embedded sections. EKS had higher number of
chromosomal abnormalities than AKS.
In summary KS SC apparently represents a mixed pool endothelial cells
including cells from both VEC and LEC the later being a possible early
target for HHV-8 infection. Non-infected CD34+ progenitor cells appears
to be continuously recruited to the developing KS lesion and locally
infected during the development of KS. Serum HHV-8 DNA load is higher in
AKS compared to EKS and HIV-Tat titers were inversely correlated to HHV-8
DNA load in AKS patients. Increased number of recurrent and sporadic
chromosomal abnormalities found mostly in a subset of late nodular KS
cases may indicate the onset of a clonal cell population (sarcoma)
KSHV/HHV-8 and HIV infection in Kaposi's sarcoma development
Abstract Kaposi's sarcoma (KS) is a highly and abnormally vascularized tumor-like lesion affecting the skin, lymphnodes and viscera, which develops from early inflammatory stages of patch/plaque to late, nodular tumors composed predominant of spindle cells (SC). These SC are infected with the Kaposi's sarcoma-associated herpesvirus or human herpesvirus-8 (KSHV/HHV-8). KS is promoted during HIV infection by various angiogenic and pro-inflammatory factors including HIV-Tat. The latency associated nuclear antigen type 1 (LANA-1) protein is well expressed in SC, highly immunogenic and considered important in the generation and maintenance of HHV-8 associated malignancies. Various studies favour an endothelial origin of the KS SC, expressing "mixed" lymphatic and vascular endothelial cell markers, possibly representing hybrid phenotypes of endothelial cells (EC). A significant number of SC during KS development are apparently not HHV8 infected, which heterogeneity in viral permissiveness may indicate that non-infected SC may continuously be recruited in to the lesion from progenitor cells and locally triggered to develop permissiveness to HHV8 infection. In the present study various aspects of KS pathogenesis are discussed, focusing on the histopathological as well as cytogenetic and molecular genetic changes in KS.</p
