12 research outputs found
Experimental validation of a new biphasic model of the contact mechanics of the porcine hip
Hip models that incorporate the biphasic behaviour of articular cartilage can improve understanding of the joint function, pathology of joint degeneration and effect of potential interventions. The aim of this study was to develop a specimen-specific biphasic finite element model of a porcine acetabulum incorporating a biphasic representation of the articular cartilage and to validate the model predictions against direct experimental measurements of the contact area in the same specimen. Additionally, the effect of using a different tension-compression behaviour for the solid phase of the articular cartilage was investigated. The model represented different radial clearances and load magnitudes. The comparison of the finite element predictions and the experimental measurement showed good agreement in the location, size and shape of the contact area, and a similar trend in the relationship between contact area and load was observed. There was, however, a deviation of over 30% in the magnitude of the contact area, which might be due to experimental limitations or to simplifications in the material constitutive relationships used. In comparison with the isotropic solid phase model, the tension-compression solid phase model had better agreement with the experimental observations. The findings provide some confidence that the new biphasic methodology for modelling the cartilage is able to predict the contact mechanics of the hip joint. The validation provides a foundation for future subject-specific studies of the human hip using a biphasic cartilage model
Biphasic investigation of contact mechanics in natural human hips during activities
The aim of this study was to determine the cartilage contact mechanics and the associated fluid pressurisation of the hip joint under eight daily activities, using a three-dimensional finite element hip model with biphasic cartilage layers and generic geometries. Loads with spatial and temporal variations were applied over time and the time-dependent performance of the hip cartilage during walking was also evaluated. It was found that the fluid support ratio was over 90% during the majority of the cycles for all the eight activities. A reduced fluid support ratio was observed for the time at which the contact region slid towards the interior edge of the acetabular cartilage, but these occurred when the absolute level of the peak contact stress was minimal. Over 10 cycles of gait, the peak contact stress and peak fluid pressure remained constant, but a faster process of fluid exudation was observed for the interior edge region of the acetabular cartilage. The results demonstrate the excellent function of the hip cartilage within which the solid matrix is prevented from high levels of stress during activities owing to the load shared by fluid pressurisation. The findings are important in gaining a better understanding of the hip function during daily activities, as well as the pathology of hip degeneration and potential for future interventions. They provide a basis for future subject-specific biphasic investigations of hip performance during activities
Prevalence and influencing factors of co-morbid depression in patients with type 2 diabetes mellitus: a General Hospital based study
A generalized model for thermoelastic damping in beams with mid-plane stretching nonlinearity
This work presents a general model to accurately capture thermoelastic damping in beams with mid-plane stretching nonlinearity. The model consists of a nonlinear Timoshenko beam model coupled with a two-dimensional heat conduction model. The heat conduction model accounts for heat transfer in both the transverse and the axial directions of the beam. Numerical solutions are obtained by discretizing the beam using spectral element method (SEM). Using the proposed model, the thermoelastic damping (Q(TED)) quality factor is obtained for beams actuated by electrostatic force using the eigenfrequency analysis and the energy approach. The eigenfrequency analysis conducted on the beams under the electrostatic actuation showed significant difference from the results published in literature. A detailed numerical analysis is performed in order to understand the discrepancy. It is shown that the discrepancy primarily occurs due to the differences in the methods to couple the displacement and thermal fields, with the model presented in the paper being the more general one. (C) 2017 Elsevier Ltd. All rights reserved
Effect of pruning time on bio-chemical parameters of guava (<em>Psidium guajava</em> l.) genotypes
Cyclical loading causes injury in and around the porcine proximal femoral physeal plate: proposed cause of the development of cam deformity in young athletes
BACKGROUND: The repetitive load to which the adolescent athlete’s body is exposed during training and competition affects bone growth. In previous studies, abnormalities of the spine and extremities of adolescent athletes have been described on radiographs and this also applies to the hip. The cam deformity of the hip is an extension of the physeal plate and develops during the adolescent athlete’s growth. Studies of the porcine spine have shown that the vertebral endplates, apophyseal rings and intervertebral discs are susceptible to both static and repetitive loads. The proximal physeal plate of the porcine femur is susceptible to static loads, but no studies have been performed on its susceptibility to repetitive loads. The purpose of this study was to investigate the susceptibility of the proximal porcine femur to repetitive loads. METHODS: Descriptive laboratory study. Seven proximal femurs from four young (5 months) pigs were loaded repetitively (50,000 cycles) using a previously developed model. Three were loaded vertically, three antero-superiorly and one was used as a control. All femurs were examined macroscopically, histologically and with MRI after loading. RESULTS: No macroscopic injuries were detected on any of the femurs after loading. Fluid redistribution was seen in all femurs on MRI compared with the unloaded control. Injuries were seen in all loaded femurs on microscopic examination of histological samples. Injuries, perpendicularly to the physeal plate and fractures adjacent to the plate, were seen in the vertically loaded specimens. In the antero-superiorly loaded specimen, the injury in the growth plate was parallel to the plate. CONCLUSION: Repeated loading of the young porcine hip leads to histological injuries in and adjacent to the physeal plate. These injuries are likely to cause growth disturbances in the proximal femur. We propose that such injuries may be induced in adolescent athletes and offer a plausible explanation for the development of the cam deformity
