1,309 research outputs found

    Evidence functions: a compositional approach to information

    Get PDF
    The discrete case of Bayes’ formula is considered the paradigm of information acquisition. Prior and posterior probability functions, as well as likelihood functions, called evidence functions, are compositions following the Aitchison geometry of the simplex, and have thus vector character. Bayes’ formula becomes a vector addition. The Aitchison norm of an evidence function is introduced as a scalar measurement of information. A fictitious fire scenario serves as illustration. Two different inspections of affected houses are considered. Two questions are addressed: (a) which is the information provided by the outcomes of inspections, and (b) which is the most informative inspection.Peer Reviewe

    Evidence functions: a compositional approach to information

    Get PDF
    The discrete case of Bayes’ formula is considered the paradigm of information acquisition. Prior and posterior probability functions, as well as likelihood functions, called evidence functions, are compositions following the Aitchison geometry of the simplex, and have thus vector character. Bayes’ formula becomes a vector addition. The Aitchison norm of an evidence function is introduced as a scalar measurement of information. A fictitious fire scenario serves as illustration. Two different inspections of affected houses are considered. Two questions are addressed: (a) which is the information provided by the outcomes of inspections, and (b) which is the most informative inspection.Peer ReviewedPostprint (author's final draft

    Geostatistical interpretation of paleoceanographic data over large ocean basins - Reality and fiction

    Get PDF
    A promising approach to reconstruct oceanographic scenarios of past time slices is to drive numerical ocean circulation models with sea surface temperatures, salinities, and ice distributions derived from sediment core data. Set up properly, this combination of boundary conditions provided by the data and physical constraints represented by the model can yield physically consistent sets of three-dimensional water mass distribution and circulation patterns. This idea is not only promising but dangerous, too. Numerical models cannot be fed directly with data from single core locations distributed unevenly and, as it is the common case, scarcely in space. Conversely, most models require forcing data sets on a regular grid with no missing points, and some method of interpolation between punctual source data and model grid has to be employed. An ideal gridding scheme must retain as much of the information present in the sediment core data while generating as few artifacts in the interpolated field as possible. Based on a set of oxygen isotope ratios, we discuss several standard interpolation strategies, namely nearest neighbour schemes, bicubic splines, Delaunay triangulation, and ordinary and indicator kriging. We assess the gridded fields with regard to their physical consistence and their implications for the oceanic circulation

    General approach to coordinate representation of compositional tables

    Get PDF
    This is the peer reviewed version which has been published in final form at [https://doi.org/10.1111/sjos.12326]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Compositional tables can be considered a continuous counterpart to the well-known contingency tables. Their cells, which generally contain positive real numbers rather than just counts, carry relative information about relationships between two factors. Hence, compositional tables can be seen as a generalization of (vector) compositional data. Due to their relative character, compositions are commonly expressed in orthonormal coordinates using a sequential binary partition prior to being further processed by standard statistical tools. Unfortunately, the resulting coordinates do not respect the two-dimensional nature of compositional tables. Information about relationship between factors is thus not well captured. The aim of this paper is to present a general system of orthonormal coordinates with respect to the Aitchison geometry, which allows for an analysis of the interactions between factors in a compositional table. This is achieved using logarithms of odds ratios, which are also widely used in the context of contingency tables

    Graphics for relatedness research

    Get PDF
    Studies of relatedness have been crucial in molecular ecology over the last decades. Good evidence of this is the fact that studies of population structure, evolution of social behaviours, genetic diversity and quantitative genetics all involve relatedness research. The main aim of this article is to review the most common graphical methods used in allele sharing studies for detecting and identifying family relationships. Both IBS and IBD based allele sharing studies are considered. Furthermore, we propose two additional graphical methods from the field of compositional data analysis: the ternary diagram and scatterplots of isometric log-ratios of IBS and IBD probabilities. We illustrate all graphical tools with genetic data from the HGDP-CEPH diversity panel, using mainly 377 microsatellites genotyped for 25 individuals from the Maya population of this panel. We enhance all graphics with convex hulls obtained by simulation and use these to confirm the documented relationships. The proposed compositional graphics are shown to be useful in relatedness research, as they also single out the most prominent related pairs. The ternary diagram is advocated for its ability to display all three allele sharing probabilities simultaneously. The log-ratio plots are advocated as an attempt to overcome the problems with the Euclidean distance interpretation in the classical graphics.Peer ReviewedPostprint (published version

    The normal distribution in some constrained sample spaces

    Get PDF
    Phenomena with a constrained sample space appear frequently in practice. This is the case, for example, with strictly positive data, or with compositional data, such as percentages or proportions. If the natural measure of difference is not the absolute one, simple algebraic properties show that it is more convenient to work with a geometry different from the usual Euclidean geometry in real space, and with a measure different from the usual Lebesgue measure, leading to alternative models that better fit the phenomenon under study. The general approach is presented and illustrated using the normal distribution, both on the positive real line and on the D-part simplex. The original ideas of McAlister in his introduction to the lognormal distribution in 1879, are recovered and updated.Peer Reviewe
    corecore