1,317 research outputs found
Interpretation of runaway electron synchrotron and bremsstrahlung images
The crescent spot shape observed in DIII-D runaway electron synchrotron
radiation images is shown to result from the high degree of anisotropy in the
emitted radiation, the finite spectral range of the camera and the distribution
of runaways. The finite spectral camera range is found to be particularly
important, as the radiation from the high-field side can be stronger by a
factor than the radiation from the low-field side in DIII-D. By
combining a kinetic model of the runaway dynamics with a synthetic synchrotron
diagnostic we see that physical processes not described by the kinetic model
(such as radial transport) are likely to be limiting the energy of the
runaways. We show that a population of runaways with lower dominant energies
and larger pitch-angles than those predicted by the kinetic model provide a
better match to the synchrotron measurements. Using a new synthetic
bremsstrahlung diagnostic we also simulate the view of the Gamma Ray Imager
(GRI) diagnostic used at DIII-D to resolve the spatial distribution of
runaway-generated bremsstrahlung.Comment: 21 pages, 11 figure
Resistive and ferritic-wall plasma dynamos in a sphere
We numerically study the effects of varying electric conductivity and
magnetic permeability of the bounding wall on a kinematic dynamo in a sphere
for parameters relevant to Madison plasma dynamo experiment (MPDX). The dynamo
is excited by a laminar, axisymmetric flow of von Karman type. The flow is
obtained as a solution to the Navier-Stokes equation for an isothermal fluid
with a velocity profile specified at the sphere's boundary. The properties of
the wall are taken into account as thin-wall boundary conditions imposed on the
magnetic field. It is found that an increase in the permeability of the wall
reduces the critical magnetic Reynolds number Rm_cr. An increase in the
conductivity of the wall leaves Rm_cr unaffected, but reduces the dynamo growth
rate
Experimental conditions to suppress edge localised modes by magnetic perturbations in the ASDEX Upgrade tokamak
Access conditions for full suppression of Edge Localised Modes (ELMs) by
Magnetic Perturbations (MP) in low density high confinement mode (H-mode)
plasmas are studied in the ASDEX Upgrade tokamak. The main empirical
requirements for full ELM suppression in our experiments are: 1. The poloidal
spectrum of the MP must be aligned for best plasma response from weakly stable
kink-modes, which amplify the perturbation, 2. The plasma edge density must be
below a critical value, ~m. The edge collisionality
is in the range (ions) and
(electrons). However, our data does not show that the edge collisionality is
the critical parameter that governs access to ELM suppression. 3. The pedestal
pressure must be kept sufficiently low to avoid destabilisation of small ELMs.
This requirement implies a systematic reduction of pedestal pressure of
typically 30\% compared to unmitigated ELMy H-mode in otherwise similar
plasmas. 4. The edge safety factor lies within a certain window.
Within the range probed so far, , one such window,
has been identified. Within the range of plasma rotation
encountered so far, no apparent threshold of plasma rotation for ELM
suppression is found. This includes cases with large cross field electron flow
in the entire pedestal region, for which two-fluid MHD models predict that the
resistive plasma response to the applied MP is shielded
Observation of a multimode plasma response and its relationship to density pumpout and edge-localized mode suppression
Density pumpout and edge-localized mode (ELM) suppression by applied n=2 magnetic fields in low-collisionality DIII-D plasmas are shown to be correlated with the magnitude of the plasma response driven on the high-field side (HFS) of the magnetic axis but not the low-field side (LFS) midplane. These distinct responses are a direct measurement of a multimodal magnetic plasma response, with each structure preferentially excited by a different n=2 applied spectrum and preferentially detected on the LFS or HFS. Ideal and resistive magneto-hydrodynamic (MHD) calculations find that the LFS measurement is primarily sensitive to the excitation of stable kink modes, while the HFS measurement is primarily sensitive to resonant currents (whether fully shielding or partially penetrated). The resonant currents are themselves strongly modified by kink excitation, with the optimal applied field pitch for pumpout and ELM suppression significantly differing from equilibrium field alignment.This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Fusion
Energy Sciences, using the DIII-D National Fusion Facility,
a DOE Office of Science user facility, under Awards No. DE-FC02-04ER54698, No. DE-AC02-09CH11466,
No. DE-FG02-04ER54761, No. DE-AC05-06OR23100,
No. DE-SC0001961, and No. DE-AC05-00OR22725.
S. R. H. was supported by AINSE and ANSTO
- …
