1,140 research outputs found
Bounds on Query Convergence
The problem of finding an optimum using noisy evaluations of a smooth cost
function arises in many contexts, including economics, business, medicine,
experiment design, and foraging theory. We derive an asymptotic bound E[ (x_t -
x*)^2 ] >= O(1/sqrt(t)) on the rate of convergence of a sequence (x_0, x_1,
>...) generated by an unbiased feedback process observing noisy evaluations of
an unknown quadratic function maximised at x*. The bound is tight, as the proof
leads to a simple algorithm which meets it. We further establish a bound on the
total regret, E[ sum_{i=1..t} (x_i - x*)^2 ] >= O(sqrt(t)) These bounds may
impose practical limitations on an agent's performance, as O(eps^-4) queries
are made before the queries converge to x* with eps accuracy.Comment: 6 pages, 2 figure
DeLeT: Graduates' Perceptions of the Program and Their Preparedness for Teaching: An Evaluation Report
This report focuses on how DeLeT graduates from both programs perceive their preparedness for day school teaching, as well as how they perceive the DeLeT faculty and the programs' strengths and weaknesses. It also examines similarities and differences between the two programs and offers possible explanations for the handful of differences we identified. Such an in-depth examination of graduates' perspectives provides valuable formative feedback to both programs. In addition, we anticipate that this report will be useful to funders and faculty at other Jewish teacher education programs who may be interested in using the evaluation tools and procedures we have developed to learn about their graduates and identify areas for program improvement
Automatic Differentiation of Algorithms for Machine Learning
Automatic differentiation---the mechanical transformation of numeric computer
programs to calculate derivatives efficiently and accurately---dates to the
origin of the computer age. Reverse mode automatic differentiation both
antedates and generalizes the method of backwards propagation of errors used in
machine learning. Despite this, practitioners in a variety of fields, including
machine learning, have been little influenced by automatic differentiation, and
make scant use of available tools. Here we review the technique of automatic
differentiation, describe its two main modes, and explain how it can benefit
machine learning practitioners. To reach the widest possible audience our
treatment assumes only elementary differential calculus, and does not assume
any knowledge of linear algebra.Comment: 7 pages, 1 figur
AD in Fortran, Part 1: Design
We propose extensions to Fortran which integrate forward and reverse
Automatic Differentiation (AD) directly into the programming model.
Irrespective of implementation technology, embedding AD constructs directly
into the language extends the reach and convenience of AD while allowing
abstraction of concepts of interest to scientific-computing practice, such as
root finding, optimization, and finding equilibria of continuous games.
Multiple different subprograms for these tasks can share common interfaces,
regardless of whether and how they use AD internally. A programmer can maximize
a function F by calling a library maximizer, XSTAR=ARGMAX(F,X0), which
internally constructs derivatives of F by AD, without having to learn how to
use any particular AD tool. We illustrate the utility of these extensions by
example: programs become much more concise and closer to traditional
mathematical notation. A companion paper describes how these extensions can be
implemented by a program that generates input to existing Fortran-based AD
tools
An Analysis of Publication Venues for Automatic Differentiation Research
We present the results of our analysis of publication venues for papers on
automatic differentiation (AD), covering academic journals and conference
proceedings. Our data are collected from the AD publications database
maintained by the autodiff.org community website. The database is purpose-built
for the AD field and is expanding via submissions by AD researchers. Therefore,
it provides a relatively noise-free list of publications relating to the field.
However, it does include noise in the form of variant spellings of journal and
conference names. We handle this by manually correcting and merging these
variants under the official names of corresponding venues. We also share the
raw data we get after these corrections.Comment: 6 pages, 3 figure
AD in Fortran, Part 2: Implementation via Prepreprocessor
We describe an implementation of the Farfel Fortran AD extensions. These
extensions integrate forward and reverse AD directly into the programming
model, with attendant benefits to flexibility, modularity, and ease of use. The
implementation we describe is a "prepreprocessor" that generates input to
existing Fortran-based AD tools. In essence, blocks of code which are targeted
for AD by Farfel constructs are put into subprograms which capture their
lexical variable context, and these are closure-converted into top-level
subprograms and specialized to eliminate EXTERNAL arguments, rendering them
amenable to existing AD preprocessors, which are then invoked, possibly
repeatedly if the AD is nested
Automatic differentiation in machine learning: a survey
Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in
machine learning. Automatic differentiation (AD), also called algorithmic
differentiation or simply "autodiff", is a family of techniques similar to but
more general than backpropagation for efficiently and accurately evaluating
derivatives of numeric functions expressed as computer programs. AD is a small
but established field with applications in areas including computational fluid
dynamics, atmospheric sciences, and engineering design optimization. Until very
recently, the fields of machine learning and AD have largely been unaware of
each other and, in some cases, have independently discovered each other's
results. Despite its relevance, general-purpose AD has been missing from the
machine learning toolbox, a situation slowly changing with its ongoing adoption
under the names "dynamic computational graphs" and "differentiable
programming". We survey the intersection of AD and machine learning, cover
applications where AD has direct relevance, and address the main implementation
techniques. By precisely defining the main differentiation techniques and their
interrelationships, we aim to bring clarity to the usage of the terms
"autodiff", "automatic differentiation", and "symbolic differentiation" as
these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure
Progress in blind separation of magnetoencephalographic data
The match between the physics of MEG and the assumptions of the most well developed blind source separation (BSS) algorithms (unknown instantaneous linear mixing process, many sensors compared to expected recoverable sources, large data limit) have tempted researchers to apply these algorithms to MEG data. We review some of these efforts, with particular emphasis on our own work
- …
