37,667 research outputs found
Documents of the JPL Photovoltaics Program Analysis and Integration Center: An annotated bibliography
A bibliography of internal and external documents produced by the Jet Propulsion Laboratory, based on the work performed by the Photovoltaics Program Analysis and Integration Center, is presented with annotations. As shown in the Table of Contents, the bibliography is divided into three subject areas: (1) Assessments, (2) Methdological Studies, and (3) Supporting Studies. Annotated abstracts are presented for 20 papers
Erosion-corrosion behaviour of Zirconia WC-6Co, WC-6Ni and SS316
The current study investigates a ceramic, two cermets and a metal under solid-liquid impingement with 3.5% NaCl and 150mg/l hydraulic fracturing sand at two extreme angles of impact, 90° and 20°. The materials tested were Zirconia, sintered WC-6Co, sintered WC-6Ni and SS316. Each material was exposed to a testing regime using re-circulating impinging jet apparatus with a velocity of 19m/s and one hour duration. The electrochemical properties of the materials were investigated in-situ through anodic and cathodic polarisation and application of cathodic protection. Post experimental analysis of the degraded surface was completed using Scanning Electron Microscopy (SEM) and Optical 3D Imaging. Zirconia exhibited a brittle response to erosion-corrosion testing with the mass loss at 90° being fifty times greater than the negligible mass loss at 20°. WC-6Co and WC-6Ni both outperformed SS316 under all solid-liquid impingement erosion-corrosion testing regimes. WC-6Ni exhibited slightly better erosion-corrosion resistance over WC-6Co at both 90° and 20°. SS316 had the best corrosion resistance and showed passivation during anodic polarisations in solid-liquid impingement conditions. The nickel binder increased the corrosion resistance of WC-6Ni over WC-6Co. Cathodic protection was successfully applied on sintered WC-6Co and SS316 isolating the key components of erosion-corrosion
Measuring micro-organism gas production
Transducer, which senses pressure buildup, is easy to assemble and use, and rate of gas produced can be measured automatically and accurately. Method can be used in research, in clinical laboratories, and for environmental pollution studies because of its ability to detect and quantify rapidly the number of gas-producing microorganisms in water, beverages, and clinical samples
Recommended from our members
Hydrogen isotopic composition of the Tagish Lake meteorite: comparison with other carbonaceous chondrites
A study into the hydrogen isotopic characteristics of whole rock samples of carbonaceous chondrites and their comparison with a whole rock sample of the Tagish Lake meteorite
Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XI: Stabilizing neutron stars against a ferromagnetic collapse
We construct a new Hartree-Fock-Bogoliubov (HFB) mass model, labeled HFB-18,
with a generalized Skyrme force. The additional terms that we have introduced
into the force are density-dependent generalizations of the usual and
terms, and are chosen in such a way as to avoid the high-density
ferromagnetic instability of neutron stars that is a general feature of
conventional Skyrme forces, and in particular of the Skyrme forces underlying
all the HFB mass models that we have developed in the past. The remaining
parameters of the model are then fitted to essentially all the available mass
data, an rms deviation of 0.585 MeV being obtained. The new model thus
gives almost as good a mass fit as our best-fit model HFB-17 ( = 0.581
MeV), and has the advantage of avoiding the ferromagnetic collapse of neutron
stars.Comment: accepted for publication in Physical Review
Symmetry energy: nuclear masses and neutron stars
We describe the main features of our most recent Hartree-Fock-Bogoliubov
nuclear mass models, based on 16-parameter generalized Skyrme forces. They have
been fitted to the data of the 2012 Atomic Mass Evaluation, and favour a value
of 30 MeV for the symmetry coefficient J, the corresponding root-mean square
deviation being 0.549 MeV. We find that this conclusion is compatible with
measurements of neutron-skin thickness. By constraining the underlying
interactions to fit various equations of state of neutron matter calculated
{\it ab initio} our models are well adapted to a realistic and unified
treatment of all regions of neutron stars. We use our models to calculate the
composition, the equation of state, the mass-radius relation and the maximum
mass. Comparison with observations of neutron stars again favours a value of J
= 30 MeV.Comment: 10 pages, 9 figures, to appear in EPJA special volume on symmetry
energ
Fast iterative solution of reaction-diffusion control problems arising from chemical processes
PDE-constrained optimization problems, and the development of preconditioned iterative methods for the efficient solution of the arising matrix system, is a field of numerical analysis that has recently been attracting much attention. In this paper, we analyze and develop preconditioners for matrix systems that arise from the optimal control of reaction-diffusion equations, which themselves result from chemical processes. Important aspects in our solvers are saddle point theory, mass matrix representation and effective Schur complement approximation, as well as the outer (Newton) iteration to take account of the nonlinearity of the underlying PDEs
Recommended from our members
Organic indicators of alteration in the CR chondrites
A study of the organic components in the CR chondrite macromolecule in order to assess the role of pre-terrestrial alteration on the organic inventory
Submillimeter-Wave Measurements and Analysis of the Ground and ν2 = 1 States of Water
In order to facilitate further studies of water in the interstellar medium, the envelopes of late-type stars, jets, and shocked regions, the frequencies of 17 newly measured H_2 ^(16)O transitions between 0.841 and 1.575 THz are reported. A complete update of the available water line frequencies and a detailed calculation of unmeasured rotational transitions and transition intensities as a function of temperature are presented for the ground and ν_2 = 1 state levels below 3000 cm^(-1) of excitation energy. The new terahertz transitions were measured with a recently developed laser difference frequency spectrometer. Six of these transitions arise from the ν_2 = 1 state, and the other 11 are in the ground state; all have lower state energies from 700 to 1750 cm^(-1) and should be accessible to Stratospheric Observatory For Infrared Astronomy (SOFIA) through the atmosphere. The transitions near 0.850 THz are accessible from the ground with existing receivers. Observations of the newly measured ν_2 = 1 state transitions, which include the 1_(1, 1)-0_(0, 0) fundamental at 1.2057 THz and five other very low J transitions, should provide valuable insights into role played by the ν2 = 1 state in the cooling dynamics of jets, shocks, masers, and strongly infrared-pumped regions. The line list is presented to assist in the planning of observational campaigns with the Far-Infrared Space Telescope (FIRST) and other proposed space missions with which a full suite of water observations can be carried out
- …
