80 research outputs found

    Effects of age and leg length upon central loop of the Gastrocnemius-soleus H-reflex latency

    Get PDF
    BACKGROUND: central loop of the gastrocnemius-soleus H-reflex latency (T(c)) that looks promising in the diagnosis of S1 radiculopathy; has been investigated in a few studies and only two of them have focused on the constitutional factors affecting it. Although leg length has been shown to contribute to the T(c), the role of age is controversial. More confusing, none of the previously performed studies have used strict criteria to rule out subclinical neuropathy, so the results could be misleading. This study has been performed to determine the influence of leg length and age on T(c )among a carefully selected group of healthy volunteers. METHODS: after screening forty six volunteers by taking history, physical examination and a brief electrophysiologic study; forty of them were selected to enroll into the study. T(c )was obtained in all the study subjects and leg length and age were recorded for correlational analyses. RESULTS: this group was consisted of 26 males (65%) and 14 females (35%) with the age range of 19–65 years (Mean ± SD: 37 ± 10.7) and leg length range of 29.5–43 centimeters (36.4 ± 3.4). Mean ± SD for T(c )was 6.78 ± 0.3. We found a significant correlation between T(c )and leg length (p value= 0.003, r = 0.49 and confidence interval 95% = 0.59–0.88), no significant correlation was found between age and T(c )(p value= 0.48, r = 0.11), also we obtained the regression equation as: T(c )= 0.04L + 5.28 CONCLUSIONS: in contrast to leg length, age was not correlated with T(c). Future studies are required to delineate other contributing factors to T(c)

    A new approach to estimation of the number of central synapse(s) included in the H-reflex

    Get PDF
    BACKGROUND: Among the main clinical applications of the H-reflex are the evaluation of the S1 nerve root conductivity such as radiculopathy and measurement of the excitability of the spinal motoneurons in neurological conditions. An attempt has been made to reduce the pathway over which H-reflex can be obtained in a hope to localize a lesion to the S1 nerve root, so the S1 central loop has been suggested. The main goal of this study is the estimation of the H-reflex number of synapse(s) for better understanding of the physiology of this practical reflex. METHODS: Forty healthy adult volunteers (22 males, 18 females) with the mean age of (37.7 ± 10.2) years participated in this study. They were positioned comfortably in the prone position, with their feet off the edge of the plinth. Recording electrodes were positioned at the mid point of a line connecting the mid popliteal crease to the proximal flare of the medial malleolus. Stimulation was applied at the tibial nerve in the popliteal fossa and H, F and M waves were recorded. Without any change in the location of the recording electrodes, a monopolar needle was inserted as cathode at a point 1 cm medial to the posterior superior iliac spine, perpendicular to the frontal plane. The anode electrode was placed over the anterior superior iliac spine, and then M and H waves of the central loop were recorded. After processing the data, sacral cord conduction delay was determined by this formula: * Sacral cord conduction delay = central loop of H-reflex – (delays of the proximal motor and sensory fibers in the central loop). RESULTS: The central loop of H-reflex was (6.77 ± 0.28) msec and the sacral cord conduction delay was (1.09 ± 0.06) msec. CONCLUSION: The sacral cord conduction time was estimated to be about 1.09 msec in this study and because at least 1 msec is required to transmit the signal across the synapse between the sensory ending and the motor cell, so this estimated time was sufficient for only one central synapse in this reflex

    CCR3 and Choroidal Neovascularization

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly in industrialized countries. The “wet” AMD, characterized by the development of choroidal neovacularization (CNV), could result in rapid and severe loss of central vision. The critical role of vascular endothelial growth factor A (VEGF-A) in CNV development has been established and VEGF-A neutralization has become the standard care for wet AMD. Recently, CCR3 was reported to play an important role in CNV development and that CCR3 targeting was reported to be superior to VEGF-A targeting in CNV suppression. We investigated the role of CCR3 in CNV development using the Matrigel induced CNV and found that in both rats and mice, CNV was well-developed in the control eyes as well as in eyes treated with CCR3 antagonist SB328437 or CCR3 neutralizing antibodies. No statistically significant difference in CNV areas was found between the control and SB328437 or CCR3-ab treated eyes. Immunostaining showed no specific expression of CCR3 in or near CNV. In contrast, both VEGF-A neutralizing antibodies and rapamycin significantly suppressed CNV. These results indicate that CCR3 plays no significant role in CNV development and question the therapeutic approach of CCR3 targeting to suppress CNV. On the other hand, our data support the therapeutic strategies of VEGF-A and mTOR (mammalian target of rapamycin) targeting for CNV

    Population genomics of speciation and admixture

    Get PDF
    The application of population genomics to the understanding of speciation has led to the emerging field of speciation genomics. This has brought new insight into how divergence builds up within the genome during speciation and is also revealing the extent to which species can continue to exchange genetic material despite reproductive barriers. It is also providing powerful new approaches for linking genotype to phenotype in admixed populations. In this chapter, we give an overview of some of the methods that have been used and some of the novel insights gained. We also outline some of the pitfalls of the most commonly used methods and possible problems with interpretation of the results

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC. Funding Bill & Melinda Gates Foundation
    corecore