2,685 research outputs found

    SUE: A Special Purpose Computer for Spin Glass Models

    Full text link
    The use of last generation Programmable Electronic Components makes possible the construction of very powerful and competitive special purpose computers. We have designed, constructed and tested a three-dimensional Spin Glass model dedicated machine, which consists of 12 identical boards. Each single board can simulate 8 different systems, updating all the systems at every clock cycle. The update speed of the whole machine is 217ps/spin with 48 MHz clock frequency. A device devoted to fast random number generation has been developed and included in every board. The on-board reprogrammability permits us to change easily the lattice size, or even the update algorithm or the action. We present here a detailed description of the machine and the first runs using the Heat Bath algorithm.Comment: Submitted to Computer Physics Communications, 19 pages, 5 figures, references adde

    Differential response of communities of plants, snails, ants and spiders to long-term mowing in a small-scale experiment

    Get PDF
    We examined the response of communities of four groups of organisms (plants, snails, ants and spiders) in a small scale mosaic of 8-years mown and unmown plots in a wet meadow in Central Europe. The experimental setup consisted of 7 unmown and 8 regularly mown 4 m2 plots in checkerboard arrangement. Eight years after the start of the experiment, the plant community structure diverged in response to mowing/nonmowing, both in species composition and structure. Both bryophyte and vascular plant species numbers were significantly higher in the mown plots. In unmown plots, bryophytes nearly disappeared and plots were dominated by the tall tussock grass Molinia caerulea. Both diversity and abundance of snails were higher in unmown plots than in mown ones. Ant nests were more abundant in mown plots and species composition differed between mown and unmown plots. We captured significantly more individuals of spiders in mown plots but we did not find any difference in species composition. We conclude that the 8-years duration of different management of 4 m2 plots was sufficient to establish different communities in low movable organisms, whereas these plots are probably too small to host different assemblages of organisms with good active dispersal abilities

    Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    Get PDF
    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2^2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometres as well as 16 highly significant UHECR shower candidates.Comment: Accepted for publication in Astroparticle Physic

    UWE en Sistema de Recomendación de Objetos de Aprendizaje. Aplicando Ingeniería Web: Un Método en Caso de Estudio

    Get PDF
    La Ingeniería Web propone nuevos métodos para el diseño de aplicaciones que se ejecutan en esta nueva plataforma que es la World Wide Web. Uno de estos métodos es UWE (UML Web Engineering), el cual aprovecha la notación estándar del UML e incorpora elementos que son propios del desarrollo Web. En este artículo se presenta un caso de estudio para el diseño de un Sistema de Recomendación de Objetos de Aprendizaje, donde el modelado básico se realiza mediante el UWE. Se modela una aplicación Web que permite a los usuarios realizar la composición de los Objetos de Aprendizaje que el mismo sistema le recomienda al usuario previo análisis de las características tanto del mismo como de los Objeto de Aprendizaje almacenados en un repositorio especializado llamado AGORA

    Increase of the Density, Temperature and Velocity of Plasma Jets driven by a Ring of High Energy Laser Beams

    Full text link
    Supersonic plasma outflows driven by multi-beam, high-energy lasers, such as Omega and NIF, have been and will be used as platforms for a variety of laboratory astrophysics experiments. Here we propose a new way of launching high density and high velocity, plasma jets using multiple intense laser beams in a hollow ring formation. We show that such jets provide a more flexible and versatile platform for future laboratory astrophysics experiments. Using high resolution hydrodynamic simulations, we demonstrate that the collimated jets can achieve much higher density, temperature and velocity when multiple laser beams are focused to form a hollow ring pattern at the target, instead of focused onto a single spot. We carried out simulations with different ring radii and studied their effects on the jet properties. Implications for laboratory collisionless shock experiments are discussed.Comment: 5 pages, 4 figures, Accepted to HED

    The bright optical flash from GRB 060117

    Get PDF
    We present a discovery and observation of an extraordinarily bright prompt optical emission of the GRB 060117 obtained by a wide-field camera atop the robotic telescope FRAM of the Pierre Auger Observatory from 2 to 10 minutes after the GRB. We found rapid average temporal flux decay of alpha = -1.7 +- 0.1 and a peak brightness R = 10.1 mag. Later observations by other instruments set a strong limit on the optical and radio transient fluxes, unveiling an unexpectedly rapid further decay. We present an interpretation featuring a relatively steep electron-distribution parameter p ~ 3.0 and providing a straightforward solution for the overall fast decay of this optical transient as a transition between reverse and forward shock.Comment: Accepted to A&A, 4 pages, corected few typos pointed out by X.F. W

    Astroclimatic Characterization of Vallecitos: A candidate site for the Cherenkov Telescope Array at San Pedro Martir

    Full text link
    We conducted an 18 month long study of the weather conditions of the Vallecitos, a proposed site in Mexico to harbor the northern array of the Cherenkov Telescope Array (CTA). It is located in Sierra de San Pedro Martir (SPM) a few kilometers away from Observatorio Astron\'omico Nacional. The study is based on data collected by the ATMOSCOPE, a multi-sensor instrument measuring the weather and sky conditions, which was commissioned and built by the CTA Consortium. Additionally, we compare the weather conditions of the optical observatory at SPM to the Vallecitos regarding temperature, humidity, and wind distributions. It appears that the excellent conditions at the optical observatory benefit from the presence of microclimate established in the Vallecitos.Comment: 16 pages, 16 figures, Publication of the Astronomical Society of the Pacific, accepte

    The U(1)-Higgs Model: Critical Behaviour in the Confinig-Higgs region

    Full text link
    We study numerically the critical properties of the U(1)-Higgs lattice model, with fixed Higgs modulus, in the region of small gauge coupling where the Higgs and Confining phases merge. We find evidence of a first order transition line that ends in a second order point. By means of a rotation in parameter space we introduce thermodynamic magnitudes and critical exponents in close resemblance with simple models that show analogous critical behaviour. The measured data allow us to fit the critical exponents finding values in agreement with the mean field prediction. The location of the critical point and the slope of the first order line are accurately given.Comment: 21 text pages. 12 postscript figures available on reques

    Cancer evolution: mathematical models and computational inference.

    Get PDF
    Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy.FM would like to acknowledge the support of The University of Cambridge, Cancer Research UK and Hutchison Whampoa Limited.This is the final published version. It first appeared at http://sysbio.oxfordjournals.org/content/early/2014/10/07/sysbio.syu081.short?rss=1
    corecore