2,130 research outputs found
Time scale synchronization of chaotic oscillators
This paper presents the result of the investigation of chaotic oscillator
synchronization. A new approach for detecting of synchronized behaviour of
chaotic oscillators has been proposed. This approach is based on the analysis
of different time scales in the time series generated by the coupled chaotic
oscillators. This approach has been applied for the coupled Rossler and Lorenz
systems.Comment: 19 pages, 12 figure
Transition from anticipatory to lag synchronization via complete synchronization in time-delay systems
The existence of anticipatory, complete and lag synchronization in a single
system having two different time-delays, that is feedback delay and
coupling delay , is identified. The transition from anticipatory to
complete synchronization and from complete to lag synchronization as a function
of coupling delay with suitable stability condition is discussed. The
existence of anticipatory and lag synchronization is characterized both by the
minimum of similarity function and the transition from on-off intermittency to
periodic structure in laminar phase distribution.Comment: 14 Pages and 12 Figure
Pathways to Economic Outcomes and the Impact of Health: Comparing Hispanic and Non-Hispanic Adults after Foster Care
Abstract
This study examines the financial outcomes in adulthood of Hispanics (N = 87) and White (Non-Hispanic, N = 498) persons placed in foster care during childhood. It uses the Casey Family Programs National Alumni Study (CFPNAS) database. Path models including predictors such as gender, education, having a partner, preparation for leaving care, and problem characteristics yielded predominantly similar effects for Hispanic and White Non-Hispanic respondents. The direct effect of physical and mental health conditions such as physical or learning disability, visual or hearing impairments, or DSM disorders more strongly predicted negative outcomes for White (Non-Hispanic) respondents than for Hispanic ones
Synchronization of chaotic oscillator time scales
This paper deals with the chaotic oscillator synchronization. A new approach
to detect the synchronized behaviour of chaotic oscillators has been proposed.
This approach is based on the analysis of different time scales in the time
series generated by the coupled chaotic oscillators. It has been shown that
complete synchronization, phase synchronization, lag synchronization and
generalized synchronization are the particular cases of the synchronized
behavior called as "time--scale synchronization". The quantitative measure of
chaotic oscillator synchronous behavior has been proposed. This approach has
been applied for the coupled Rossler systems.Comment: 29 pages, 11 figures, published in JETP. 100, 4 (2005) 784-79
Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators
A new behavior type of unidirectionally coupled chaotic oscillators near the
generalized synchronization transition has been detected. It has been shown
that the generalized synchronization appearance is preceded by the intermitted
behavior: close to threshold parameter value the coupled chaotic systems
demonstrate the generalized synchronization most of the time, but there are
time intervals during which the synchronized oscillations are interrupted by
non-synchronous bursts. This type of the system behavior has been called
intermitted generalized synchronization (IGS) by analogy with intermitted lag
synchronization (ILS) [Phys. Rev. E \textbf{62}, 7497 (2000)].Comment: 8 pages, 5 figures, using epl.cls; published in Europhysics Letters.
70, 2 (2005) 169-17
Quantum response of weakly chaotic systems
Chaotic systems, that have a small Lyapunov exponent, do not obey the common
random matrix theory predictions within a wide "weak quantum chaos" regime.
This leads to a novel prediction for the rate of heating for cold atoms in
optical billiards with vibrating walls. The Hamiltonian matrix of the driven
system does not look like one from a Gaussian ensemble, but rather it is very
sparse. This sparsity can be characterized by parameters and that
reflect the percentage of large elements, and their connectivity respectively.
For we use a resistor network calculation that has direct relation to the
semi-linear response characteristics of the system.Comment: 7 pages, 5 figures, expanded improved versio
Universal Scaling Properties in Large Assemblies of Simple Dynamical Units Driven by Long-Wave Random Forcing
Large assemblies of nonlinear dynamical units driven by a long-wave
fluctuating external field are found to generate strong turbulence with scaling
properties. This type of turbulence is so robust that it persists over a finite
parameter range with parameter-dependent exponents of singularity, and is
insensitive to the specific nature of the dynamical units involved. Whether or
not the units are coupled with their neighborhood is also unimportant. It is
discovered numerically that the derivative of the field exhibits strong spatial
intermittency with multifractal structure.Comment: 10 pages, 7 figures, submitted to PR
Synchronization of Coupled Systems with Spatiotemporal Chaos
We argue that the synchronization transition of stochastically coupled
cellular automata, discovered recently by L.G. Morelli {\it et al.} (Phys. Rev.
{\bf 58 E}, R8 (1998)), is generically in the directed percolation universality
class. In particular, this holds numerically for the specific example studied
by these authors, in contrast to their claim. For real-valued systems with
spatiotemporal chaos such as coupled map lattices, we claim that the
synchronization transition is generically in the universality class of the
Kardar-Parisi-Zhang equation with a nonlinear growth limiting term.Comment: 4 pages, including 3 figures; submitted to Phys. Rev.
- …
