1,241 research outputs found
Soluble gC1qR is an autocrine signal that induces B1R expression on endothelial cells
Bradykinin (BK) is one of the most potent vasodilator agonists known and belongs to the kinin family of proinflammatory peptides. BK induces its activity via two G protein-coupled receptors: BK receptor 1 (B1R) and BK receptor 2. Although BK receptor 2 is constitutively expressed on endothelial cells (ECs), B1R is induced by IL-1β. The C1q receptor, receptor for the globular heads of C1q (gC1qR), which plays a role in BK generation, is expressed on activated ECs and is also secreted as soluble gC1qR (sgC1qR). Because sgC1qR can bind to ECs, we hypothesized that it may also serve as an autocrine/paracrine signal for the induction of B1R expression. In this study, we show that gC1qR binds to ECs via a highly conserved domain consisting of residues 174-180, as assessed by solid-phase binding assay and deconvolution fluorescence microscopy. Incubation of ECs (24 h, 37°C) with sgC1qR resulted in enhancement of B1R expression, whereas incubation with gC1qR lacking aa 174-180 and 154-162 had a diminished effect. Binding of sgC1qR to ECs was through surface-bound fibrinogen and was inhibited by anti-fibrinogen. In summary, our data suggest that, at sites of inflammation, sgC1qR can enhance vascular permeability by upregulation of B1R expression through de novo synthesis, as well as rapid translocation of preformed B1R
Advancing our Understanding of Heat Wave Criteria and Associated Health Impacts to Improve Heat Wave Alerts in Developing Country Settings.
Health effects of heat waves with high baseline temperatures in areas such as India remain a critical research gap. In these regions, extreme temperatures may affect the underlying population's adaptive capacity; heat wave alerts should be optimized to avoid continuous high alert status and enhance constrained resources, especially under a changing climate. Data from registrars and meteorological departments were collected for four communities in Northwestern India. Propensity Score Matching (PSM) was used to obtain the relative risk of mortality and number of attributable deaths (i.e., absolute risk which incorporates the number of heat wave days) under a variety of heat wave definitions (n = 13) incorporating duration and intensity. Heat waves' timing in season was also assessed for potential effect modification. Relative risk of heat waves (risk of mortality comparing heat wave days to matched non-heat wave days) varied by heat wave definition and ranged from 1.28 [95% Confidence Interval: 1.11-1.46] in Churu (utilizing the 95th percentile of temperature for at least two consecutive days) to 1.03 [95% CI: 0.87-1.23] in Idar and Himmatnagar (utilizing the 95th percentile of temperature for at least four consecutive days). The data trended towards a higher risk for heat waves later in the season. Some heat wave definitions displayed similar attributable mortalities despite differences in the number of identified heat wave days. These findings provide opportunities to assess the "efficiency" (or number of days versus potential attributable health impacts) associated with alternative heat wave definitions. Findings on both effect modification and trade-offs between number of days identified as "heat wave" versus health effects provide tools for policy makers to determine the most important criteria for defining thresholds to trigger heat wave alerts
Evaluation of a Subject specific dual-transmit approach for improving B1 field homogeneity in cardiovascular magnetic resonance at 3T
BACKGROUND: Radiofrequency (RF) shading artifacts degrade image quality while performing cardiovascular magnetic resonance (CMR) at higher field strengths. In this article, we sought to evaluate the effect of local RF (B(1) field) shimming by using a dual-source–transmit RF system for cardiac cine imaging and to systematically evaluate the effect of subject body type on the B(1) field with and without local RF shimming. METHODS: We obtained cardiac images from 37 subjects (including 11 patients) by using dual-transmit 3T CMR. B(1) maps with and without subject-specific local RF shimming (exploiting the independent control of transmit amplitude and phase of the 2 RF transmitters) were obtained. Metrics quantifying B(1) field homogeneity were calculated and compared with subject body habitus. RESULTS: Local RF shimming across the region encompassed by the heart increased the mean flip angle (μ) in that area (88.5 ± 15.2% vs. 81.2 ± 13.3%; P = 0.0014), reduced the B(1) field variation by 42.2 ± 13%, and significantly improved the percentage of voxels closer to μ (39% and 82% more voxels were closer to ± 10% and ± 5% of μ, respectively) when compared with no RF shimming. B(1) homogeneity was independent of subject body type (body surface area [BSA], body mass index [BMI] or anterior-posterior/right-left patient width ratio [AP/RL]). Subject specific RF (B(1)) shimming with a dual-transmit system improved local RF homogeneity across all body types. CONCLUSION: With or without RF shimming, cardiac B1 field homogeneity does not depend on body type, as characterized by BMI, BSA, and AP/RL. For all body types studied, cardiac B(1) field homogeneity was significantly improved by performing local RF shimming with 2 independent RF-transmit channels. This finding indicates the need for subject-specific RF shimming
The prevalence and distribution of gastrointestinal parasites of stray and refuge dogs in four locations in India
A gastrointestinal parasite survey of 411 stray and refuge dogs sampled from four geographical and climactically distinct locations in India revealed these animals to represent a significant source of environmental contamination for parasites that pose a zoonotic risk to the public. Hookworms were the most commonly identified parasite in dogs in Sikkim (71.3%), Mumbai (48.8%) and Delhi (39.1%). In Ladakh, which experiences harsh extremes in climate, a competitive advantage was observed for parasites such as Sarcocystis spp. (44.2%), Taenia hydatigena (30.3%) and Echinococcus granulosus (2.3%) that utilise intermediate hosts for the completion of their life cycle. PCR identified Ancylostoma ceylanicum and Ancylostoma caninum to occur sympatrically, either as single or mixed infections in Sikkim (Northeast) and Mumbai (West). In Delhi, A. caninum was the only species identified in dogs, probably owing to its ability to evade unfavourable climatic conditions by undergoing arrested development in host tissue. The expansion of the known distribution of A. ceylanicum to the west, as far as Mumbai, justifies the renewed interest in this emerging zoonosis and advocates for its surveillance in future human parasite surveys. Of interest was the absence of Trichuris vulpis in dogs, in support of previous canine surveys in India. This study advocates the continuation of birth control programmes in stray dogs that will undoubtedly have spill-over effects on reducing the levels of environmental contamination with parasite stages. In particular, owners of pet animals exposed to these environments must be extra vigilant in ensuring their animals are regularly dewormed and maintaining strict standards of household and personal hygiene
Modeling and Simulation of Components in an Integrated Gasification Combined Cycle Plant for Developing Sensor Networks to Detect Faults
The goal of this work is to help synthesize a sensor network to detect and diagnose faults and to monitor conditions of the key equipment items. The desired algorithm for sensor network design would provide information about the number, type and location of sensors that should be deployed for fault diagnosis and condition monitoring of a plant. In this work, the focus was on the integrated gasification combined cycle (IGCC) power plant where the faults at the equipment level and the plant level are considered separately. At the plant level, the objective is to observe whether a fault has occurred or not and identify the specific fault. For component-level faults, the objective is to obtain quantitative information about the extent of a particular fault. For the model-based sensor network design, high-fidelity process model of the IGCC plant is the key requirement.;For component level sensor placement, high-fidelity partial differential algebraic equation (PDAE)-based models are developed. Mechanistic models for faults are developed and included in the PDAE-based models. For system-level sensor placement, faults are simulated in the IGCC plant and the dynamic response of the process is captured. Both the steady-state and dynamic information are used to generate markers that are then utilized for sensor network design.;Whether faults in a particular equipment item should be considered at the unit level or system level depend on the criticality of the equipment item, its likelihood to failure, and the resolution desired for specific faults. In this work, the sour water gas shift reactor (SWGSR) and the gasifier are considered at the unit level. Fly ash may get deposited on the SWGSR catalyst and in the voids in the SWGSR resulting in decreased conversion of carbon monoxide. A MATLAB-based PDAE model of the SWGSR has been developed that considers key faults such as changes in the porosity, surface area, and catalyst activity. In a slagging gasifier, the molten slag that flows along the inner wall can penetrate into the refractory layer, and due to chemical corrosion and thermal and mechanical stress eventually result in thinning or spalling of the refractory. Extent of penetration of slag into the refractory wall and the spalling of the refractory are considered to be important variables for condition monitoring of the gasifier. In addition, as an increasing slag layer thickness can eventually lead to shutdown of the gasifier yet the slag layer thickness cannot be directly measured using the current measurement technology, slag layer thickness is also considered to be an important variable for condition monitoring. For capturing the slag formation, and detachment phenomena accurately, a novel hybrid shrinking core-shrinking particle (HSCSP) model is developed. For tracking the detached slag droplets and the char particles along the gasifier, a particle model is developed and integrated with the HSCSP model. A slag model is developed that captures the process of the detachment of the slag droplets from the char surface, transport of the droplets towards the wall, deposition of a fraction of the droplets on the wall and formation of a slag layer on the wall. Finally, a refractory degradation model is developed for calculating the penetration of the slag inside the wall and the size and time for a spall to occur due to the combined effects of volume change as a result of slag penetration as well as thermal and mechanical stresses.;System-level models are enhanced and faults are simulated spanning across various sections of the IGCC plant. For example, in the SELEXOL-based acid gas removal unit the available area in the trays of distillation columns may get reduced due to deposition of solids. This can result in loss of efficiency. Leakages in heat exchangers in this unit can result in the loss of expensive solvent or hazardous gases. In the combined cycle section, faults such as leakages and fouling in the heat exchangers, increased loss of heat through the combustor insulation that can result in loss of efficiency are simulated.;Sensor placement using a two-tier approach is also performed by developing a sensor network for a combined system that includes unit level as well as system level faults. A model of the gasification island is developed by integrating the SWGSR model developed in MATLAB with the model of the rest of the plant developed in Aspen Plus Dynamics. Since the two models are developed using different software platforms, an integration framework is developed that couples and synchronizes the two dynamic models. The sensor network obtained using the models developed in this work is found to be effective in observing and resolving faults both at the unit level as well as the plant level. (Abstract shortened by UMI.)
DIASPORA AND IDENTITY IN THE DIGITAL AGE: CULTURAL COMMUNITIES AND THE NATION
The following article is based on a keynote speech on Diaspora and Identity in the digital age. Cultural Communities and the Nation delivered at Media Culture Days at the College of Political, Administrative and Communication Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania, on May 17, 201
The Impact Of Occupation Stress On The Mental Health Of Women Employees In The It Sector In Accordance With Demographic Variables
In this study, many demographic factors like age, experience, duration of service, hierarchy, income, and marital status are taken into account as the paper attempts to understand the effects of job-related stress impacting the well-being of women workers in the information technology (IT) industry. The fast-paced and demanding nature of the work environment common in the IT sector has been linked to higher-than-average employee stress levels. Due to societal expectations and job realities, women in particular may encounter specific difficulties. In addition to examining how demographic factors like age, marital status, educational attainment, job role, and years of experience may affect this association, the goal of this study is to investigate the link between occupational stress and mental health among women in the information technology industry. This study explores the level of occupational stress faced by women working in the IT industry, focusing light on the particular pressures and stressors they experience at work. The study investigates how workplace stress affects the mental health of women in the IT industry, looking at possible outcomes like anxiety, depression, burnout, and general psychological wellness. Age, marital status, educational background, hierarchy, and years of experience are among the demographic parameters that are examined for their possible impact on the association between occupational stress and mental health. In order to understand how societal norms, gender roles, and workplace dynamics may increase or lessen the effects of professional stress on mental health, the study takes into account the sociocultural framework in which women in the IT industry function.
Keywords: , , , ,
- …
