56 research outputs found

    Entanglement and complexity of interacting qubits subject to asymmetric noise

    Full text link
    The simulation complexity of predicting the time evolution of delocalized many-body quantum systems has attracted much recent interest, and simulations of such systems in real quantum hardware are promising routes to demonstrating a quantum advantage over classical machines. In these proposals, random noise is an obstacle that must be overcome for a faithful simulation, and a single error event can be enough to drive the system to a classically trivial state. We argue that this need not always be the case, and consider a modification to a leading quantum sampling problem-- time evolution in an interacting Bose-Hubbard chain of transmon qubits [Neill et al, Science 2018] -- where each site in the chain has a driven coupling to a lossy resonator and particle number is no longer conserved. The resulting quantum dynamics are complex and highly nontrivial. We argue that this problem is harder to simulate than the isolated chain, and that it can achieve volume-law entanglement even in the strong noise limit, likely persisting up to system sizes beyond the scope of classical simulation. Further, we show that the metrics which suggest classical intractability for the isolated chain point to similar conclusions in the noisy case. These results suggest that quantum sampling problems including nontrivial noise could be good candidates for demonstrating a quantum advantage in near-term hardware.Comment: 20 pages, 15 figure

    Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line

    Full text link
    We demonstrate a lumped-element Josephson parametric amplifier, using a single-ended design that includes an on-chip, high-bandwidth flux bias line. The amplifier can be pumped into its region of parametric gain through either the input port or through the flux bias line. Broadband amplification is achieved at a tunable frequency ω/2π\omega/2 \pi between 5 to 7 GHz with quantum-limited noise performance, a gain-bandwidth product greater than 500 MHz, and an input saturation power in excess of -120 dBm. The bias line allows fast frequency tuning of the amplifier, with variations of hundreds of MHz over time scales shorter than 10 ns

    Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits

    Full text link
    We investigate the interaction of a transmon qubit with a classical gravitational field. Exploiting the generic phenomena of the gravitational redshift and Aharonov-Bohm phase, we show that entangled quantum states dephase with a universal rate. The gravitational phase shift is expressed in terms of a quantum computing noise channel. We give a measurement protocol based on a modified phase estimation algorithm which is linear in the phase drift, which is optimal for measuring the small phase that is acquired from the gravitation channel. Additionally, we propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges as an example of this phenomenon's utility. We estimate a sensitivity for measuring the local gravitational acceleration to be δg/g107\delta g/g \sim 10^{-7}. This paper demonstrates that classical gravitation has a non-trivial influence on quantum computing hardware, and provides an illustration of how quantum computing hardware may be utilized for purposes other than computation. While we focus on superconducting qubits, we point the universal nature of gravitational phase effects for all quantum platforms.Comment: 10 pages, 3 figure

    Robustly learning the Hamiltonian dynamics of a superconducting quantum processor

    Get PDF
    Precise means of characterizing analog quantum simulators are key to developing quantum simulators capable of beyond-classical computations. Here, we precisely estimate the free Hamiltonian parameters of a superconducting-qubit analog quantum simulator from measured time-series data on up to 14 qubits. To achieve this, we develop a scalable Hamiltonian learning algorithm that is robust against state-preparation and measurement (SPAM) errors and yields tomographic information about those SPAM errors. The key subroutines are a novel super-resolution technique for frequency extraction from matrix time-series, tensorESPRIT, and constrained manifold optimization. Our learning results verify the Hamiltonian dynamics on a Sycamore processor up to sub-MHz accuracy, and allow us to construct a spatial implementation error map for a grid of 27 qubits. Our results constitute an accurate implementation of a dynamical quantum simulation that is precisely characterized using a new diagnostic toolkit for understanding, calibrating, and improving analog quantum processors

    Topological Surface States Protected From Backscattering by Chiral Spin Texture

    Get PDF
    Topological insulators are a new class of insulators in which a bulk gap for electronic excitations is generated by strong spin orbit coupling. These novel materials are distinguished from ordinary insulators by the presence of gapless metallic boundary states, akin to the chiral edge modes in quantum Hall systems, but with unconventional spin textures. Recently, experiments and theoretical efforts have provided strong evidence for both two- and three-dimensional topological insulators and their novel edge and surface states in semiconductor quantum well structures and several Bi-based compounds. A key characteristic of these spin-textured boundary states is their insensitivity to spin-independent scattering, which protects them from backscattering and localization. These chiral states are potentially useful for spin-based electronics, in which long spin coherence is critical, and also for quantum computing applications, where topological protection can enable fault-tolerant information processing. Here we use a scanning tunneling microscope (STM) to visualize the gapless surface states of the three-dimensional topological insulator BiSb and to examine their scattering behavior from disorder caused by random alloying in this compound. Combining STM and angle-resolved photoemission spectroscopy, we show that despite strong atomic scale disorder, backscattering between states of opposite momentum and opposite spin is absent. Our observation of spin-selective scattering demonstrates that the chiral nature of these states protects the spin of the carriers; they therefore have the potential to be used for coherent spin transport in spintronic devices.Comment: to be appear in Nature on August 9, 200
    corecore