36 research outputs found

    PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain

    Get PDF
    AMP-activated protein kinase (AMPK) occurs as heterotrimeric complexes in which a catalytic subunit (α 1/α 2) is bound to one of two β subunits (β 1/β 2) and one of three γ subunits (γ 1/γ 2/γ 3). The ability to selectively activate specific isoforms would be a useful research tool and a promising strategy to combat diseases such as cancer and Type 2 diabetes. We report that the AMPK activator PT-1 selectively increased the activity of γ 1- but not γ 3-containing complexes in incubated mouse muscle. PT-1 increased the AMPK-dependent phosphorylation of the autophagy-regulating kinase ULK1 (unc-51-like autophagyactivating kinase 1) on Ser&lt;sup&gt;555&lt;/sup&gt; , but not proposed AMPK-γ 3 substrates such as Ser&lt;sup&gt;231&lt;/sup&gt; on TBC1 (tre-2/USP6, BUB2, cdc16) domain family, member 1 (TBC1D1) or Ser&lt;sup&gt;212&lt;/sup&gt; on acetyl-CoA carboxylase subunit 2 (ACC2), nor did it stimulate glucose transport. Surprisingly, however, in human embryonic kidney (HEK) 293 cells expressing human γ 1, γ 2 or γ 3, PT-1 activated all three complexes equally.Wewere unable to reproduce previous findings suggesting that PT-1 activates AMPK by direct binding between the kinase and auto-inhibitory domains (AIDs) of the α subunit.We show instead that PT-1 activates AMPK indirectly by inhibiting the respiratory chain and increasing cellular AMP:ATP and/or ADP:ATP ratios. Consistent with this mechanism, PT-1 failed to activate AMPK in HEK293 cells expressing an AMP-insensitive R299G mutant of AMPK-γ 1. We propose that the failure of PT-1 to activate γ 3-containing complexes in muscle is not an intrinsic feature of such complexes, but is because PT-1 does not increase cellular AMP:ATP ratios in the specific subcellular compartment(s) in which γ 3 complexes are located.</p

    Isoform-specific AMPK association with TBC1D1 is reduced by a mutation associated with severe obesity

    Get PDF
    AMP-activated protein kinase (AMPK) is a key regulator of cellular and systemic energy homeostasis which achieves this through the phosphorylation of a myriad of downstream targets. One target is TBC1D1 a Rab-GTPase-activating protein that regulates glucose uptake in muscle cells by integrating insulin signalling with that promoted by muscle contraction. Ser237 in TBC1D1 is a target for phosphorylation by AMPK, an event which may be important in regulating glucose uptake. Here, we show AMPK heterotrimers containing the α1, but not the α2, isoform of the catalytic subunit form an unusual and stable association with TBC1D1, but not its paralogue AS160. The interaction between the two proteins is direct, involves a dual interaction mechanism employing both phosphotyrosinebinding (PTB) domains of TBC1D1 and is increased by two different pharmacological activators of AMPK (AICAR and A769962). The interaction enhances the efficiency by which AMPK phosphorylates TBC1D1 on its key regulatory site, Ser237. Furthermore, the interaction is reduced by a naturally occurring R125W mutation in the PTB1 domain of TBC1D1, previously found to be associated with severe familial obesity in females, with a concomitant reduction in Ser237 phosphorylation. Our observations provide evidence for a functional difference between AMPK α-subunits and extend the repertoire of protein kinases that interact with substrates via stabilisation mechanisms that modify the efficacy of substrate phosphorylation

    A <i>Tbc1d1</i><sup>Ser231Ala</sup>-knockin mutation partially impairs AICAR- but not exercise-induced muscle glucose uptake in mice

    Get PDF
    Aims/hypothesis: TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) is a Rab GTPase-activating protein (RabGAP) that has been implicated in regulating GLUT4 trafficking. TBC1D1 can be phosphorylated by the AMP-activated protein kinase (AMPK) on Ser(231), which consequently interacts with 14-3-3 proteins. Given the key role for AMPK in regulating insulin-independent muscle glucose uptake, we hypothesised that TBC1D1-Ser(231) phosphorylation and/or 14-3-3 binding may mediate AMPK-governed glucose homeostasis.Methods: Whole-body glucose homeostasis and muscle glucose uptake were assayed in mice bearing a Tbc1d1 (Ser231Ala)-knockin mutation or harbouring skeletal muscle-specific Ampkα1/α2 (also known as Prkaa1/2) double-knockout mutations in response to an AMPK-activating agent, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Exercise-induced muscle glucose uptake and exercise capacity were also determined in the Tbc1d1 (Ser231Ala)-knockin mice.Results: Skeletal muscle-specific deletion of Ampkα1/a2 in mice prevented AICAR-induced hypoglycaemia and muscle glucose uptake. The Tbc1d1 (Ser231Ala)-knockin mutation also attenuated the glucose-lowering effect of AICAR in mice. Glucose uptake and cell surface GLUT4 content were significantly lower in muscle isolated from the Tbc1d1 (Ser231Ala)-knockin mice upon stimulation with a submaximal dose of AICAR. However, this Tbc1d1 (Ser231Ala)-knockin mutation neither impaired exercise-induced muscle glucose uptake nor affected exercise capacity in mice.Conclusions/interpretation: TBC1D1-Ser(231) phosphorylation and/or 14-3-3 binding partially mediates AMPK-governed glucose homeostasis and muscle glucose uptake in a context-dependent manner.</p

    New Strategies in Sport Nutrition to Increase Exercise Performance.

    Get PDF
    Despite over 50 years of research, the field of sports nutrition continues to grow at a rapid rate. Whilst the traditional research focus was one that centred on strategies to maximize competition performance, emerging data in the last decade has demonstrated how both macronutrient and micronutrient availability can play a prominent role in regulating those cell signalling pathways that modulate skeletal muscle adaptations to endurance and resistance training. Nonetheless, in the context of exercise performance, it is clear that carbohydrate (but not fat) still remains king and that carefully chosen ergogenic aids (e.g. caffeine, creatine, sodium bicarbonate, beta-alanine, nitrates) can all promote performance in the correct exercise setting. In relation to exercise training, however, it is now thought that strategic periods of reduced carbohydrate and elevated dietary protein intake may enhance training adaptations whereas high carbohydrate availability and antioxidant supplementation may actually attenuate training adaptation. Emerging evidence also suggests that vitamin D may play a regulatory role in muscle regeneration and subsequent hypertrophy following damaging forms of exercise. Finally, novel compounds (albeit largely examined in rodent models) such as epicatechins, nicotinamide riboside, resveratrol, β-hydroxy β-methylbutyrate, phosphatidic acid and ursolic acid may also promote or attenuate skeletal muscle adaptations to endurance and strength training. When taken together, it is clear that sports nutrition is very much at the heart of the Olympic motto, Citius, Altius, Fortius (faster, higher, stronger)

    AMPK:a nutrient and energy sensor that maintains energy homeostasis

    Get PDF
    AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability

    EMG-Normalised Kinase Activation during Exercise Is Higher in Human Gastrocnemius Compared to Soleus Muscle

    Get PDF
    In mice, certain proteins show a highly confined expression in specific muscle groups. Also, resting and exercise/contraction-induced phosphorylation responses are higher in rat skeletal muscle with low mitochondrial content compared to muscles with high mitochondrial content, possibly related to differential reactive oxygen species (ROS)-scavenging ability or resting glycogen content. To evaluate these parameters in humans, biopsies from soleus, gastrocnemius and vastus lateralis muscles were taken before and after a 45 min inclined (15%) walking exercise bout at 69% VO2max aimed at simultaneously activating soleus and gastrocnemius in a comparable dynamic work-pattern. Hexokinase II and GLUT4 were 46–59% and 26–38% higher (p<0.05) in soleus compared to the two other muscles. The type I muscle fiber percentage was highest in soleus and lowest in vastus lateralis. No differences were found in protein expression of signalling proteins (AMPK subunits, eEF2, ERK1/2, TBC1D1 and 4), mitochondrial markers (F1 ATPase and COX1) or ROS-handling enzymes (SOD2 and catalase). Gastrocnemius was less active than soleus measured as EMG signal and glycogen use yet gastrocnemius displayed larger increases than soleus in phosphorylation of AMPK Thr172, eEF2 Thr56 and ERK 1/2 Thr202/Tyr204 when normalised to the mean relative EMG-signal. In conclusion, proteins with muscle-group restricted expression in mice do not show this pattern in human lower extremity muscle groups. Nonetheless the phosphorylation-response is greater for a number of kinase signalling pathways in human gastrocnemius than soleus at a given activation-intensity. This may be due to the combined subtle effects of a higher type I muscle fiber content and higher training status in soleus compared to gastrocnemius muscle

    Cohort profile: the German Diabetes Study (GDS)

    Full text link

    General aspects of muscle glucose uptake

    Full text link
    corecore