7,489 research outputs found
MiR-183/-96/-182 cluster is up-regulated in most breast cancers and increases cell proliferation and migration
Recommended from our members
Regulation of axon repulsion by MAX-1 SUMOylation and AP-3.
During neural development, growing axons express specific surface receptors in response to various environmental guidance cues. These axon guidance receptors are regulated through intracellular trafficking and degradation to enable navigating axons to reach their targets. In Caenorhabditis elegans, the UNC-5 receptor is necessary for dorsal migration of developing motor axons. We previously found that MAX-1 is required for UNC-5-mediated axon repulsion, but its mechanism of action remained unclear. Here, we demonstrate that UNC-5-mediated axon repulsion in C. elegans motor axons requires both max-1 SUMOylation and the AP-3 complex β subunit gene, apb-3 Genetic interaction studies show that max-1 is SUMOylated by gei-17/PIAS1 and acts upstream of apb-3 Biochemical analysis suggests that constitutive interaction of MAX-1 and UNC-5 receptor is weakened by MAX-1 SUMOylation and by the presence of APB-3, a competitive interactor with UNC-5. Overexpression of APB-3 reroutes the trafficking of UNC-5 receptor into the lysosome for protein degradation. In vivo fluorescence recovery after photobleaching experiments shows that MAX-1 SUMOylation and APB-3 are required for proper trafficking of UNC-5 receptor in the axon. Our results demonstrate that SUMOylation of MAX-1 plays an important role in regulating AP-3-mediated trafficking and degradation of UNC-5 receptors during axon guidance
Measuring center of pressure signals to quantify human balance using multivariate multiscale entropy by designing a force platform
Copyright @ 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP), known as center of pressure and complexity monitoring system (CPCMS), has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI) system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad) to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD) and enhanced multivariate multiscale entropy (MMSE) analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test) and 60% to 70% (eyes closed test) with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test) and 65% to 75% (closed eyes test). The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance.National Science Council (NSC) of Taiwan and the Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan (which is sponsored by the NSC)
Nodal superconductivity coexists with low-moment static magnetism in single-crystalline tetragonal FeS: A muon spin relaxation and rotation study
We report muon spin relaxation and rotation (SR) measurements on
hydrothermally-grown single crystals of the tetragonal superconductor~FeS,
which help to clarify the controversial magnetic state and superconducting gap
symmetry of this compound. SR time spectra were obtained from 280~K down
to 0.025~K in zero field (ZF) and applied fields up to 20 mT. In ZF the
observed loss of initial asymmetry (signal amplitude) and increase of
depolarization rate~ below 10~K indicate the onset of
static magnetism, which coexists with superconductivity below .
Transverse-field SR yields a muon depolarization rate that clearly shows a linear dependence at low
temperature, consistent with nodal superconductivity. The -wave model
gives the best fit to the observed temperature and field dependencies. The
normalized superfluid densities versus normalized temperature for different
fields collapse onto the same curve, indicating the superconducting gap
structure is independent of field. The in-plane penetration depth
(0) = 198(3) nm.Comment: 5 figure
A New Dynamic Path Planning Approach for Unmanned Aerial Vehicles
Dynamic path planning is one of the key procedures for unmanned aerial vehicles (UAV) to successfully fulfill the diversified missions. In this paper, we propose a new algorithm for path planning based on ant colony optimization (ACO) and artificial potential field. In the proposed algorithm, both dynamic threats and static obstacles are taken into account to generate an artificial field representing the environment for collision free path planning. To enhance the path searching efficiency, a coordinate transformation is applied to move the origin of the map to the starting point of the path and in line with the source-destination direction. Cost functions are established to represent the dynamically changing threats, and the cost value is considered as a scalar value of mobile threats which are vectors actually. In the process of searching for an optimal moving direction for UAV, the cost values of path, mobile threats, and total cost are optimized using ant optimization algorithm. The experimental results demonstrated the performance of the new proposed algorithm, which showed that a smoother planning path with the lowest cost for UAVs can be obtained through our algorithm.
(PDF) A New Dynamic Path Planning Approach for Unmanned Aerial Vehicles. Available from: https://www.researchgate.net/publication/328765418_A_New_Dynamic_Path_Planning_Approach_for_Unmanned_Aerial_Vehicles [accessed Nov 20 2018]
Mining Time-delayed Gene Regulation Patterns from Gene Expression Data
Discovered gene regulation networks are very helpful to predict unknown gene functions. The activating and deactivating relations between genes and genes are mined from microarray gene expression data. There are evidences showing that multiple time units delay exist in a gene regulation process. Association rule mining technique is very suitable for finding regulation relations among genes. However, current association rule mining techniques cannot handle temporally ordered transactions. We propose a modified association rule mining technique for efficiently discovering time-delayed regulation relationships among genes.By analyzing gene expression data, we can discover gene relations. Thus, we use modified association rule to mine gene regulation patterns. Our proposed method, BC3, is designed to mine time-delayed gene regulation patterns with length 3 from time series gene expression data. However, the front two items are regulators, and the last item is their affecting target. First we use Apriori to find frequent 2-itemset in order to figure backward to BL1. The Apriori mined the frequent 2-itemset in the same time point, so we make the L2 split to length one for having relation in the same time point. Then we combine BL1 with L1 to a new ordered-set BC2 with time-delayed relations. After pruning BC2 with the threshold, BL2 is derived. The results are worked out by BL2 joining itself to BC3, and sifting BL3 from BC3. We use yeast gene expression data to evaluate our method and analyze the results to show our work is efficient
Tequila Regulates Insulin-Like Signaling and Extends Life Span in Drosophila melanogaster
The aging process is a universal phenomenon shared by all living organisms. The identification of longevity genes is important in that the study of these genes is likely to yield significant insights into human senescence. In this study, we have identified Tequila as a novel candidate gene involved in the regulation of longevity in Drosophila melanogaster. We have found that a hypomorphic mutation of Tequila (Teq(f01792)), as well as cell-specific downregulation of Tequila in insulin-producing neurons of the fly, significantly extends life span. Tequila deficiency-induced life-span extension is likely to be associated with reduced insulin-like signaling, because Tequila mutant flies display several common phenotypes of insulin dysregulation, including reduced circulating Drosophila insulin-like peptide 2 (Dilp2), reduced Akt phosphorylation, reduced body size, and altered glucose homeostasis. These observations suggest that Tequila may confer life-span extension by acting as a modulator of Drosophila insulin-like signaling
Anti-Neuroinflammatory Effects of the Calcium Channel Blocker Nicardipine on Microglial Cells: Implications for Neuroprotection
Background/Objective Nicardipine is a calcium channel blocker that has been widely used to control blood pressure in severe hypertension following events such as ischemic stroke, traumatic brain injury, and intracerebral hemorrhage. However, accumulating evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play important roles in neurodegeneration, and the effect of nicardipine on microglial activation remains unresolved. Methodology/Principal Findings In the present study, using murine BV-2 microglia, we demonstrated that nicardipine significantly inhibits microglia-related neuroinflammatory responses. Treatment with nicardipine inhibited microglial cell migration. Nicardipine also significantly inhibited LPS plus IFN-γ-induced release of nitric oxide (NO), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, nicardipine also inhibited microglial activation by peptidoglycan, the major component of the Gram-positive bacterium cell wall. Notably, nicardipine also showed significant anti-neuroinflammatory effects on microglial activation in mice in vivo. Conclusion/Significance The present study is the first to report a novel inhibitory role of nicardipine on neuroinflammation and provides a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases
- …
