436 research outputs found

    Phase-space structure analysis of self-gravitating collisionless spherical systems

    Full text link
    In the mean field limit, isolated gravitational systems often evolve towards a steady state through a violent relaxation phase. One question is to understand the nature of this relaxation phase, in particular the role of radial instabilities in the establishment/destruction of the steady profile. Here, through a detailed phase-space analysis based both on a spherical Vlasov solver, a shell code and a NN-body code, we revisit the evolution of collisionless self-gravitating spherical systems with initial power-law density profiles ρ(r)rn\rho(r) \propto r^n, 0n1.50 \leq n \leq -1.5, and Gaussian velocity dispersion. Two sub-classes of models are considered, with initial virial ratios η=0.5\eta=0.5 ("warm") and η=0.1\eta=0.1 ("cool"). Thanks to the numerical techniques used and the high resolution of the simulations, our numerical analyses are able, for the first time, to show the clear separation between two or three well known dynamical phases: (i) the establishment of a spherical quasi-steady state through a violent relaxation phase during which the phase-space density displays a smooth spiral structure presenting a morphology consistent with predictions from self-similar dynamics, (ii) a quasi-steady state phase during which radial instabilities can take place at small scales and destroy the spiral structure but do not change quantitatively the properties of the phase-space distribution at the coarse grained level and (iii) relaxation to non spherical state due to radial orbit instabilities for n1n \leq -1 in the cool case.Comment: Accepted for publication in Astronomy and Astrophysics, 14 pages, 9 figure

    Effect of primordial non-Gaussianities on the far-UV luminosity function of high-redshift galaxies: implications for cosmic reionization

    Full text link
    [Abridged] Understanding how the intergalactic medium (IGM) was reionized at z > 6 is one of the big challenges of current high redshift astronomy. It requires modelling the collapse of the first astrophysical objects (Pop III stars, first galaxies) and their interaction with the IGM, while at the same time pushing current observational facilities to their limits. The observational and theoretical progress of the last few years have led to the emergence of a coherent picture in which the budget of hydrogen-ionizing photons is dominated by low-mass star-forming galaxies, with little contribution from Pop III stars and quasars. The reionization history of the Universe therefore critically depends on the number density of low-mass galaxies at high redshift. In this work, we explore how changes in the statistical properties of initial density fluctuations affect the formation of early galaxies. Following Habouzit et al. (2014), we run 5 N-body simulations with Gaussian and (scale-dependent) non-Gaussian initial conditions, all consistent with Planck constraints. By appealing to a galaxy formation model and to a population synthesis code, we compute the far-UV galaxy luminosity function down to M_UV = -14 at redshift 7 < z < 15. We find that models with strong primordial non-Gaussianities on < Mpc scales show a far-UV luminosity function significantly enhanced in low-mass galaxies. We adopt a reionization model calibrated from state-of-the-art hydrodynamical simulations and show that such non-Gaussianities leave a clear imprint on the Universe reionization history and electron Thomson scattering optical depth tau_E. Although current uncertainties in the physics of reionization and on the determination of tau_E still dominate the signatures of non-Gaussianities, our results suggest that tau_E could ultimately be used to constrain the statistical properties of initial density fluctuations.Comment: 18 pages, 12 figures, accepted for publication in MNRA

    Testing primordial non-Gaussianities on galactic scales at high redshift

    Full text link
    Primordial non-Gaussianities provide an important test of inflationary models. Although the Planck CMB experiment has produced strong limits on non-Gaussianity on scales of clusters, there is still room for considerable non-Gaussianity on galactic scales. We have tested the effect of local non-Gaussianity on the high redshift galaxy population by running five cosmological N-body simulations down to z=6.5. For these simulations, we adopt the same initial phases, and either Gaussian or scale-dependent non-Gaussian primordial fluctuations, all consistent with the constraints set by Planck on clusters scales. We then assign stellar masses to each halo using the halo - stellar mass empirical relation of Behroozi et al. (2013). Our simulations with non-Gaussian initial conditions produce halo mass functions that show clear departures from those obtained from the analogous simulations with Gaussian initial conditions at z>~10. We observe a >0.3 dex enhancement of the low-end of the halo mass function, which leads to a similar effect on the galaxy stellar mass function, which should be testable with future galaxy surveys at z>10. As cosmic reionization is thought to be driven by dwarf galaxies at high redshift, our findings may have implications for the reionization history of the Universe.Comment: 6 pages, 3 figures, 1 table, MNRAS (Letters) in pres

    Vlasov versus N-body: the H\'enon sphere

    Full text link
    We perform a detailed comparison of the phase-space density traced by the particle distribution in Gadget simulations to the result obtained with a spherical Vlasov solver using the splitting algorithm. The systems considered are apodized H\'enon spheres with two values of the virial ratio, R ~ 0.1 and 0.5. After checking that spherical symmetry is well preserved by the N-body simulations, visual and quantitative comparisons are performed. In particular we introduce new statistics, correlators and entropic estimators, based on the likelihood of whether N-body simulations actually trace randomly the Vlasov phase-space density. When taking into account the limits of both the N-body and the Vlasov codes, namely collective effects due to the particle shot noise in the first case and diffusion and possible nonlinear instabilities due to finite resolution of the phase-space grid in the second case, we find a spectacular agreement between both methods, even in regions of phase-space where nontrivial physical instabilities develop. However, in the colder case, R=0.1, it was not possible to prove actual numerical convergence of the N-body results after a number of dynamical times, even with N=108^8 particles.Comment: 19 pages, 11 figures, MNRAS, in pres

    Mass Determination of Groups of Galaxies: Effects of the Cosmological Constant

    Get PDF
    The spherical infall model first developed by Lema\^{i}tre and Tolman was modified in order to include the effects of a dark energy term. The resulting velocity-distance relation was evaluated numerically. This equation, when fitted to actual data, permits the simultaneous evaluation of the central mass and of the Hubble parameter. Application of this relation to the Local Group, when the dark energy is modeled by a cosmological constant, yields a total mass for the M31-Milky Way pair of (2.5 +/- 0.7) x 10^12 M\_sun, a Hubble parameter H\_0 = 74 +/- 4 km s^-1 Mpc^-1 and a 1-D velocity dispersion for the flow of about 39 km s^-1. The zero-velocity and the marginally bound surfaces of the Local Group are at about 1.0 and 2.3 Mpc respectively from the center of mass. A similar analysis for the Virgo cluster yields a mass of (1.10 +/- 0.12) x 10^15 M\_sun and H\_0 = 65 +/- 9 km s^-1 Mpc^-1. The zero-velocity is located at a distance of 8.6 +/- 0.8 Mpc from the center of the cluster. The predicted peculiar velocity of the Local Group towards Virgo is about 190 kms^-1, in agreement with other estimates. Slightly lower masses are derived if the dark energy is represented by a fluid with an equation of state P = w\epsilon with w = -2/3.Comment: 13 pages, 3 figures. Version to appear in New Astronomy. Typing errors corrected in relation (1) and in percentage value in page

    On the coldness of the local Hubble flow: the role of baryons

    Full text link
    (Abridged) Our aim is to investigate whether the presence of baryons can have any significant influence on the properties of the local Hubble flow which has proved to be "cold". We use two cosmological zoom simulations in the standard LCDM cosmology with the same set of initial conditions to study the formation of a local group-like system within a sphere of ~7 Mpc/h. The first one is a pure dark matter simulation (runDM) while a complete treatment of the physics of baryons is introduced in the second one (runB). We found that galaxies identified in runB and their corresponding dark matter haloes in runDM have very similar spatial distributions and dynamical properties on large scales. Then, when analyzing the velocity field and the deviation from a pure Hubble flow in both simulations, namely when computing the dispersion of peculiar velocities of galaxies \sigma*(R) and those of their corresponding dark matter haloes in runDM, we found no particular differences for distances R=1 to 8 Mpc from the local group mass center. The results indicate that the "true" \sigma*(R) values can be estimated from the pure dark matter simulation with a mean error of 3 km/s when dark matter haloes are selected with maximum circular velocities of Vc\ge30 km/s, corresponding to a population of dark matter haloes in runB that host galaxies. By investigating the properties of the Hubble flow at distances R~0.7 to 3 Mpc, we also found that the estimation of the total mass enclosed at the radius of the zero-velocity surface R0, using the spherical infall model adapted to LCDM, can be underestimated by at least 50%.Comment: Accepted for publication in MNRAS, 11 pages, 7 figure

    Formation of Warped Disks by Galactic Fly-by Encounters. I. Stellar Disks

    Full text link
    Warped disks are almost ubiquitous among spiral galaxies. Here we revisit and test the `fly-by scenario' of warp formation, in which impulsive encounters between galaxies are responsible for warped disks. Based on N-body simulations, we investigate the morphological and kinematical evolution of the stellar component of disks when galaxies undergo fly-by interactions with adjacent dark matter halos. We find that the so-called `S'-shaped warps can be excited by fly-bys and sustained for even up to a few billion years, and that this scenario provides a cohesive explanation for several key observations. We show that disk warp properties are governed primarily by the following three parameters; (1) the impact parameter, i.e., the minimum distance between two halos, (2) the mass ratio between two halos, and (3) the incident angle of the fly-by perturber. The warp angle is tied up with all three parameters, yet the warp lifetime is particularly sensitive to the incident angle of the perturber. Interestingly, the modeled S-shaped warps are often non-symmetric depending on the incident angle. We speculate that the puzzling U- and L-shaped warps are geometrically superimposed S-types produced by successive fly-bys with different incident angles, including multiple interactions with a satellite on a highly elongated orbit.Comment: 16 pages, 13 figures, 3 tables. Accepted for publication in Ap
    corecore