37 research outputs found
Parental and Grandparental Ages in the Autistic Spectrum Disorders: A Birth Cohort Study
Background: A number of studies have assessed ages of parents of children with autistic spectrum disorders (ASD), and reported both maternal and paternal age effects. Here we assess relationships with grandparental ages. Methods and Findings: We compared the parental and grandparental ages of children in the population-based Avon Longitudinal Study of Parents and Children (ALSPAC), according to their scores in regard to 4 autistic trait measures and whether they had been given a diagnosis of ASD. Mean maternal and paternal ages of ASD cases were raised, but this appears to be secondary to a maternal grandmother age effect (P = 0.006): OR = 1.66[95%CI 1.16, 2.37] for each 10-year increase in the grandmother’s age at the birth of the mother. Trait measures also revealed an association between the maternal grandmother’s age and the major autistic trait–the Coherence Scale (regression coefficient b = 0.142, [95%CI = 0.057, 0.228]P = 0.001). After allowing for confounders the effect size increased to b = 0.217[95%CI 0.125, 0.308](P,0.001) for each 10 year increase in age. Conclusions: Although the relationship between maternal grandmother’s age and ASD and a major autistic trait was unexpected, there is some biological plausibility, for the maternal side at least, given that the timing of female meiosis I permits direct effects on the grandchild’s genome during the grandmother’s pregnancy. An alternative explanation is the meiotic mismatch methylation (3 M) hypothesis, presented here for the first time. Nevertheless the findings should b
Toll-like receptors genes polymorphisms and the occurrence of HCMV infection among pregnant women
From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?
Grandmothers’ smoking in pregnancy is associated with a reduced prevalence of early-onset myopia
Dissociation between mental retardation and fragile site expression in a family with fragile X-linked mental retardation
Dietary Intake Influences Adult Fertility and Offspring Fitness in Zebrafish
The burden of malnutrition, including both over- and undernutrition, is a major public health concern. Here we used a zebrafish model of diet-induced obesity to analyze the impact of dietary intake on fertility and the phenotype of the next generation. Over an eight-week period, one group received 60 mg of food each day (60 mg arm), while another received 5 mg (5 mg arm). At the end of the diet, the body mass index of the 60 mg arm was 1.5 fold greater than the 5 mg arm. The intervention also had a marked impact on fertility; breeding success and egg production in the 60 mg arm were increased 2.1- and 6.2-fold compared to the 5 mg arm, respectively. Transcriptome analysis of eggs revealed that transcripts involved in metabolic biological processes differed according to dietary intake. The progeny from the differentially fed fish were more likely to survive when the parents had access to more food. An intergenerational crossover study revealed that while parental diet did not influence weight gain in the offspring, the progeny of well-fed parents had increased levels of physical activity when exposed again to high nutrient availability. We conclude that dietary intake has an important influence on fertility and the subsequent fitness of offspring, even prior to breeding
